107 research outputs found

    Convergence of the variational iteration method for solving multi-order fractional differential equations

    Get PDF
    AbstractIn this paper, the variational iteration method (VIM) is applied to obtain approximate solutions of multi-order fractional differential equations (M-FDEs). We can easily obtain the satisfying solution just by using a few simple transformations and applying the VIM. A theorem for convergence and error estimates of the VIM for solving M-FDEs is given. Moreover, numerical results show that our theoretical analysis are accurate and the VIM is a powerful method for solving M-FDEs

    Effect of saline stress on the physiology and growth of maize hybrids and their related inbred lines

    Get PDF
    Salinity is one major abiotic stress that restrict plant growth and crop productivity. In maize (Zea mays L), salt stress causes significant yield loss each year. However, indices of maize response to salt stress are not completely explored and a desired method for maize salt tolerance evaluation is still not established. A Chinese leading maize variety Jingke968 showed various resistance to environmental factors, including salt stress. To compare its salt tolerance to other superior maize varieties, we examined the physiological and growth responses of three important maize hybrids and their related inbred lines under the control and salt stress conditions. By compar- ing the physiological parameters under control and salt treatment, we demonstrated that different salt tolerance mechanisms may be involved in different genotypes, such as the elevation of superoxide dismutase activity and/ or proline content. With Principal Component Analysis of all the growth indicators in both germination and seedling stages, along with the germination rate, superoxide dismutase activity, proline content, malondialdehyde content, relative electrolyte leakage, we were able to show that salt resistance levels of hybrids and their related inbred lines were Jingke968 > Zhengdan958 > X1132 and X1132M > Jing724 > Chang7-2 > Zheng58 > X1132F, respectively, which was consistent with the saline field observation. Our results not only contribute to a better understanding of salt stress response in three important hybrids and their related inbred lines, but also this evaluation system might be applied for an accurate assessment of salt resistance in other germplasms and breeding material

    A new integrated and homogenized global monthly land surface air temperature dataset for the period since 1900

    Get PDF
    A new dataset of integrated and homogenized monthly surface air temperature over global land for the period since 1900 [China Meteorological Administration global Land Surface Air Temperature (CMA-LSAT)] is developed. In total, 14 sources have been collected and integrated into the newly developed dataset, including three global (CRUTEM4, GHCN, and BEST), three regional and eight national sources. Duplicate stations are identified, and those with the higher priority are chosen or spliced. Then, a consistency test and a climate outlier test are conducted to ensure that each station series is quality controlled. Next, two steps are adopted to assure the homogeneity of the station series: (1) homogenized station series in existing national datasets (by National Meteorological Services) are directly integrated into the dataset without any changes (50% of all stations), and (2) the inhomogeneities are detected and adjusted for in the remaining data series using a penalized maximal t test (50% of all stations). Based on the dataset, we re-assess the temperature changes in global and regional areas compared with GHCN-V3 and CRUTEM4, as well as the temperature changes during the three periods of 1900–2014, 1979–2014 and 1998–2014. The best estimates of warming trends and there 95% confidence ranges for 1900–2014 are approximately 0.102 ± 0.006 °C/decade for the whole year, and 0.104 ± 0.009, 0.112 ± 0.007, 0.090 ± 0.006, and 0.092 ± 0.007 °C/decade for the DJF (December, January, February), MAM, JJA, and SON seasons, respectively. MAM saw the most significant warming trend in both 1900–2014 and 1979–2014. For an even shorter and more recent period (1998–2014), MAM, JJA and SON show similar warming trends, while DJF shows opposite trends. The results show that the ability of CMA-LAST for describing the global temperature changes is similar with other existing products, while there are some differences when describing regional temperature changes

    Convergence of Variational Iteration Method for Second-Order Delay Differential Equations

    No full text
    This paper employs the variational iteration method to obtain analytical solutions of second-order delay differential equations. The corresponding convergence results are obtained, and an effective technique for choosing a reasonable Lagrange multiplier is designed in the solving process. Moreover, some illustrative examples are given to show the efficiency of this method

    Corrosion behavior and mechanism of carbon steel influenced by interior deposit microflora of an in-service pipeline

    No full text
    Investigation of carbon steel corrosion influenced by in-situ microbial communities can provide reliable information about microbiologically influenced corrosion (MIC) in the oil and gas field. Here, we investigated the 90-day corrosion behavior of Q235 carbon steel influenced by interior deposit microflora of an in-service pipeline using open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS). Linear sweep voltammetry (LSV), 16S rRNA gene sequencing, and surface analysis were used to comprehensively analyze the corrosion mechanisms. The results indicated that OCP was decreased while the charge transfer resistance (Ra) was increased, and that steel corrosion was inhibited during the first 45 days. Subsequently, OCP was significantly increased while Rct was rapidly decreased, and steel corrosion was enhanced. After 90-day immersion, severe pitting corrosion with a maximum pit depth of 89.6 mu m occurred on the steel surface. Viable microbes in the final biofilm significantly increased the cathodic current. Iron carbonate, chukanovite and cementite were identified as the main corrosion products on the steel surface. Methanobacterium dominated the final biofilm community. These observations indicate that the corrosion mechanism of the final biofilm can be explained by extracellular electron transfer MIC in which microbes corrode steel by direct electron uptake. (C) 2019 Elsevier B.V. All rights reserved

    Characteristics of Co-Seismic Surface Rupture of the 2021 Maduo Mw 7.4 Earthquake and Its Tectonic Implications for Northern Qinghai–Tibet Plateau

    No full text
    A magnitude (Mw) 7.4 Maduo earthquake occurred on 22 May 2021 in the northern Qinghai-Tibet Plateau, with predominantly left-lateral strike-slip faulting and a component of normal faulting within the Bayan Har Block. The co-seismic surface rupture extended in a NWW direction for ~160 km with a complicated geometry along a poorly known young fault: the Jiangcuo Fault. The main surface rupture propagated bilaterally from the epicenter and terminated eastward in horsetail splays. The main rupture can be divided into five segments with two rupture gaps. Field surveys and detailed mapping revealed that the co-seismic surface ruptures were characterized by a series of left-lateral offsets, en echelon tensional cracks and fissures, compressional mole tracks, and widespread sand liquefication. The observed co-seismic left-lateral displacements ranged from 0.2 m to ~2.6 m, while the vertical displacements ranged from 0.1 m to ~1.5 m, much lower than the InSAR inverse slip maximum of 2–6 m. Based on the comprehensive analysis of the causative fault geometry and the tectonic structure of the northern Bayan Har Block, this study suggests that the multiple NWW trending sub-faults, including the Jiangcuo Fault, developed from the East Kunlun fault northeast of the Bayan Har Block could be regarded as the sub-faults of the East Kunlun Fault system, constituting a broad and dispersive northern boundary of the Block, controlling the inner strain distribution and deformation

    Genetic differentiation of the oriental rat flea, Xenopsylla cheopis, from two sympatric host species

    No full text
    Abstract Background The oriental rat flea (Xenopsylla cheopis), which infests several mammals, primarily rats (Rattus spp.), is the most notorious vector of human plague. In this study, we measured the genetic differentiation among populations of fleas from the Asian house rat (Rattus tanezumi) and the brown rat (R. norvegicus) using microsatellite markers in order to investigate the extent of host-switching in this parasite. Results We developed 11 polymorphic microsatellite loci for our study, nine of which showed high potential for inbreeding. AMOVA showed that the majority (84.07%, P 0.05). Analyses of the pairwise fixation index revealed that most of the ten allopatric population pairs but none of the five sympatric population pairs were significantly differentiated. Moreover, based on genetic structure clustering analysis, there was obvious differentiation between allopatric populations but not between sympatric population pairs. Conclusions These results indicate the presence of frequent migrations of the oriental rat flea between the sympatric Asian house rat and brown rat, causing a high rate of gene flow and limited genetic differentiation. We suggest that there is no clear boundary limiting the migration of oriental rat fleas between the two hosts, and thus both rat species should be monitored equally for the purposes of plague prevention and control

    Hierarchical nanomaterials via biomolecular self-assembly and bioinspiration for energy and environmental applications

    No full text
    Hierarchical nanomaterials via biomolecular self-assembly and bioinspiration for energy and environmental application
    • …
    corecore