1,456 research outputs found
Regulation of recombination at yeast nuclear pores controls repair and triplet repeat stability.
Secondary structure-forming DNA sequences such as CAG repeats interfere with replication and repair, provoking fork stalling, chromosome fragility, and recombination. In budding yeast, we found that expanded CAG repeats are more likely than unexpanded repeats to localize to the nuclear periphery. This positioning is transient, occurs in late S phase, requires replication, and is associated with decreased subnuclear mobility of the locus. In contrast to persistent double-stranded breaks, expanded CAG repeats at the nuclear envelope associate with pores but not with the inner nuclear membrane protein Mps3. Relocation requires Nup84 and the Slx5/8 SUMO-dependent ubiquitin ligase but not Rad51, Mec1, or Tel1. Importantly, the presence of the Nup84 pore subcomplex and Slx5/8 suppresses CAG repeat fragility and instability. Repeat instability in nup84, slx5, or slx8 mutant cells arises through aberrant homologous recombination and is distinct from instability arising from the loss of ligase 4-dependent end-joining. Genetic and physical analysis of Rad52 sumoylation and binding at the CAG tract suggests that Slx5/8 targets sumoylated Rad52 for degradation at the pore to facilitate recovery from acute replication stress by promoting replication fork restart. We thereby confirmed that the relocation of damage to nuclear pores plays an important role in a naturally occurring repair process
Nutrition information and its influence on menu choice within higher education establishments
©Emerald Group Publishing Limited. Purpose - The purpose of this paper is to evaluate the influence of nutritional information on menu choices in a higher educational setting using a menu designed by the students themselves. Design/methodology/approach - Based on USDA healthy eating standards, a menu comprising seven healthy and seven unhealthy meal options were presented, once unlabeled as control (n = 214) and once labeled with healthy and non-healthy nutrient icons as an intervention test menu (n = 212). Findings - Findings demonstrate that despite a positive observed trend, there were no significant differences between healthy selection of labeled and unlabeled dishes (p = 0.16).Practical implications - Providing nutritional information in student cafeterias may be challenging but helpful. However, more strategies need to be developed with student input to provide nutrition data on menus in an informative, comprehensive, yet friendly way that encourages healthy eating in campus foodservices. The authors would like to thank Sodexho at Montclair State University for their full cooperation with this project. Competing interests: the author(s) declare that they have no competing interests. Authors’ contributions: authorship is based on substantive contributions to each of the following: conception and design of the study; generation and collection of data, analysis and/or interpretation; and drafting or revision of the manuscript and approval of the final version. Ethical approval: the Independent Ethical Review Board of Montclair State University gave full approval for this study. An information sheet and consent form was distributed to all respondents and signed and where informed consent implied through participation and completion of the questionnaire. Respondents were informed of their right to withdraw from the survey and that their identity would be protected. Data were stored safely for the duration of the study, for administrative purposes, after which handling of data sets will adhere to guidelines of the Data Protection Act 1998.Social implications – No labeling system or legislation can control choices made by individuals, so the responsibility for a healthy selection must always remain personal. However, consumers should have input on menus as they have a stake in the outcome of the products. Originality/value – This novel study tested a student-designed menu to assess whether user input can influence food choice
A Gaussian process and image registration based stitching method for high dynamic range measurement of precision surfaces
Optical instruments are widely used for precision surface measurement. However, the dynamic range of optical instruments, in terms of measurement area and resolution, is limited by the characteristics of the imaging and the detection systems. If a large area with a high resolution is required, multiple measurements need to be conducted and the resulting datasets needs to be stitched together. Traditional stitching methods use six degrees of freedom for the registration of the overlapped regions, which can result in high computational complexity. Moreover, measurement error increases with increasing measurement data. In this paper, a stitching method, based on a Gaussian process, image registration and edge intensity data fusion, is presented. Firstly, the stitched datasets are modelled by using a Gaussian process so as to determine the mean of each stitched tile. Secondly, the datasets are projected to a base plane. In this way, the three-dimensional datasets are transformed to two-dimensional (2D) images. The images are registered by using an (x, y) translation to simplify the complexity. By using a high precision linear stage that is integral to the measurement instrument, the rotational error becomes insignificant and the cumulative rotational error can be eliminated. The translational error can be compensated by the image registration process. The z direction registration is performed by a least-squares error algorithm and the (x, y, z) translational information is determined. Finally, the overlapped regions of the measurement datasets are fused together by the edge intensity data fusion method. As a result, a large measurement area with a high resolution is obtained. A simulated and an actual measurement with a coherence scanning interferometer have been conducted to verify the proposed method. The stitching result shows that the proposed method is technically feasible for large area surface measurement
D-concurrence bounds for pair coherent states
The pair coherent state is a state of a two-mode radiation field which is
known as a state with non-Gaussian wave function. In this paper, the upper and
lower bounds for D-concurrence (a new entanglement measure) have been studied
over this state and calculated.Comment: 11 page
Modeling water waves beyond perturbations
In this chapter, we illustrate the advantage of variational principles for
modeling water waves from an elementary practical viewpoint. The method is
based on a `relaxed' variational principle, i.e., on a Lagrangian involving as
many variables as possible, and imposing some suitable subordinate constraints.
This approach allows the construction of approximations without necessarily
relying on a small parameter. This is illustrated via simple examples, namely
the Serre equations in shallow water, a generalization of the Klein-Gordon
equation in deep water and how to unify these equations in arbitrary depth. The
chapter ends with a discussion and caution on how this approach should be used
in practice.Comment: 15 pages, 1 figure, 39 references. This document is a contributed
chapter to an upcoming volume to be published by Springer in Lecture Notes in
Physics Series. Other author's papers can be downloaded at
http://www.denys-dutykh.com
Numerical simulation of strongly nonlinear and dispersive waves using a Green-Naghdi model
We investigate here the ability of a Green-Naghdi model to reproduce strongly
nonlinear and dispersive wave propagation. We test in particular the behavior
of the new hybrid finite-volume and finite-difference splitting approach
recently developed by the authors and collaborators on the challenging
benchmark of waves propagating over a submerged bar. Such a configuration
requires a model with very good dispersive properties, because of the
high-order harmonics generated by topography-induced nonlinear interactions. We
thus depart from the aforementioned work and choose to use a new Green-Naghdi
system with improved frequency dispersion characteristics. The absence of dry
areas also allows us to improve the treatment of the hyperbolic part of the
equations. This leads to very satisfying results for the demanding benchmarks
under consideration
The Evolution of Sunspot Magnetic Fields Associated with a Solar Flare
Solar flares occur due to the sudden release of energy stored in
active-region magnetic fields. To date, the pre-cursors to flaring are still
not fully understood, although there is evidence that flaring is related to
changes in the topology or complexity of an active region's magnetic field.
Here, the evolution of the magnetic field in active region NOAA 10953 was
examined using Hinode/SOT-SP data, over a period of 12 hours leading up to and
after a GOES B1.0 flare. A number of magnetic-field properties and low-order
aspects of magnetic-field topology were extracted from two flux regions that
exhibited increased Ca II H emission during the flare. Pre-flare increases in
vertical field strength, vertical current density, and inclination angle of ~
8degrees towards the vertical were observed in flux elements surrounding the
primary sunspot. The vertical field strength and current density subsequently
decreased in the post-flare state, with the inclination becoming more
horizontal by ~7degrees. This behaviour of the field vector may provide a
physical basis for future flare forecasting efforts.Comment: Accepted for Publication in Solar Physics. 16 pages, 4 figure
Topological (Sliced) Doping of a 3D Peierls System: Predicted Structure of Doped BaBiO3
At hole concentrations below x=0.4, Ba_(1-x)K_xBiO_3 is non-metallic. At x=0,
pure BaBiO3 is a Peierls insulator. Very dilute holes create bipolaronic point
defects in the Peierls order parameter. Here we find that the Rice-Sneddon
version of Peierls theory predicts that more concentrated holes should form
stacking faults (two-dimensional topological defects, called slices) in the
Peierls order parameter. However, the long-range Coulomb interaction, left out
of the Rice-Sneddon model, destabilizes slices in favor of point bipolarons at
low concentrations, leaving a window near 30% doping where the sliced state is
marginally stable.Comment: 6 pages with 5 embedded postscript figure
Charmless Decays Based on the six-quark Effective Hamiltonian with Strong Phase Effects II
We provide a systematic study of charmless decays (
and denote pseudoscalar and vector mesons, respectively) based on an
approximate six-quark operator effective Hamiltonian from QCD. The calculation
of the relevant hard-scattering kernels is carried out, the resulting
transition form factors are consistent with the results of QCD sum rule
calculations. By taking into account important classes of power corrections
involving "chirally-enhanced" terms and the vertex corrections as well as weak
annihilation contributions with non-trivial strong phase, we present
predictions for the branching ratios and CP asymmetries of decays into
PP, PV and VV final states, and also for the corresponding polarization
observables in VV final states. It is found that the weak annihilation
contributions with non-trivial strong phase have remarkable effects on the
observables in the color-suppressed and penguin-dominated decay modes. In
addition, we discuss the SU(3) flavor symmetry and show that the symmetry
relations are generally respected
Atoms interacting with intense, high-frequency laser pulses: Effect of the magnetic-field component on atomic stabilization
Published versio
- …
