24 research outputs found

    The costs of infection and resistance as determinants of West Nile virus susceptibility in Culex mosquitoes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding the phenotypic consequences of interactions between arthropod-borne viruses (arboviruses) and their mosquito hosts has direct implications for predicting the evolution of these relationships and the potential for changes in epidemiological patterns. Although arboviruses are generally not highly pathogenic to mosquitoes, pathology has at times been noted. Here, in order to evaluate the potential costs of <it>West Nile virus </it>(WNV) infection and resistance in a primary WNV vector, and to assess the extent to which virus-vector relationships are species-specific, we performed fitness studies with and without WNV exposure using a highly susceptible <it>Culex pipiens </it>mosquito colony. Specifically, we measured and compared survival, fecundity, and feeding rates in bloodfed mosquitoes that were (i) infected following WNV exposure (susceptible), (ii) uninfected following WNV exposure (resistant), or (iii) unexposed.</p> <p>Results</p> <p>In contrast to our previous findings with a relatively resistant <it>Cx. tarsalis </it>colony, WNV infection did not alter fecundity or blood-feeding behaviour of <it>Cx. pipiens</it>, yet results do indicate that resistance to infection is associated with a fitness cost in terms of mosquito survival.</p> <p>Conclusions</p> <p>The identification of species-specific differences provides an evolutionary explanation for variability in vector susceptibility to arboviruses and suggests that understanding the costs of infection and resistance are important factors in determining the potential competence of vector populations for arboviruses.</p

    Mosquitoes Inoculate High Doses of West Nile Virus as They Probe and Feed on Live Hosts

    Get PDF
    West Nile virus (WNV) is transmitted to vertebrate hosts by mosquitoes as they take a blood meal. The amount of WNV inoculated by mosquitoes as they feed on a live host is not known. Previous estimates of the amount of WNV inoculated by mosquitoes (101.2–104.3 PFU) were based on in vitro assays that do not allow mosquitoes to probe or feed naturally. Here, we developed an in vivo assay to determine the amount of WNV inoculated by mosquitoes as they probe and feed on peripheral tissues of a mouse or chick. Using our assay, we recovered approximately one-third of a known amount of virus inoculated into mouse tissues. Accounting for unrecovered virus, mean and median doses of WNV inoculated by four mosquito species were 104.3 PFU and 105.0 PFU for Culex tarsalis, 105.9 PFU and 106.1 PFU for Cx. pipiens, 104.7 PFU and 104.7 PFU for Aedes japonicus, and 103.6 PFU and 103.4 PFU for Ae. triseriatus. In a direct comparison, in vivo estimates of the viral dose inoculated by Cx. tarsalis were approximately 600 times greater than estimates obtained by an in vitro capillary tube transmission assay. Virus did not disperse rapidly, as >99% of the virus was recovered from the section fed or probed upon by the mosquito. Furthermore, 76% (22/29) of mosquitoes inoculated a small amount of virus (∼102 PFU) directly into the blood while feeding. Direct introduction of virus into the blood may alter viral tropism, lead to earlier development of viremia, and cause low rates of infection in co-feeding mosquitoes. Our data demonstrate that mosquitoes inoculate high doses of WNV extravascularly and low doses intravascularly while probing and feeding on a live host. Accurate estimates of the viral dose inoculated by mosquitoes are critical in order to administer appropriate inoculation doses to animals in vaccine, host competence, and pathogenesis studies

    Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings.

    Get PDF
    BACKGROUND: The survival of adult female Aedes mosquitoes is a critical component of their ability to transmit pathogens such as dengue viruses. One of the principal determinants of Aedes survival is temperature, which has been associated with seasonal changes in Aedes populations and limits their geographical distribution. The effects of temperature and other sources of mortality have been studied in the field, often via mark-release-recapture experiments, and under controlled conditions in the laboratory. Survival results differ and reconciling predictions between the two settings has been hindered by variable measurements from different experimental protocols, lack of precision in measuring survival of free-ranging mosquitoes, and uncertainty about the role of age-dependent mortality in the field. METHODS: Here we apply generalised additive models to data from 351 published adult Ae. aegypti and Ae. albopictus survival experiments in the laboratory to create survival models for each species across their range of viable temperatures. These models are then adjusted to estimate survival at different temperatures in the field using data from 59 Ae. aegypti and Ae. albopictus field survivorship experiments. The uncertainty at each stage of the modelling process is propagated through to provide confidence intervals around our predictions. RESULTS: Our results indicate that adult Ae. albopictus has higher survival than Ae. aegypti in the laboratory and field, however, Ae. aegypti can tolerate a wider range of temperatures. A full breakdown of survival by age and temperature is given for both species. The differences between laboratory and field models also give insight into the relative contributions to mortality from temperature, other environmental factors, and senescence and over what ranges these factors can be important. CONCLUSIONS: Our results support the importance of producing site-specific mosquito survival estimates. By including fluctuating temperature regimes, our models provide insight into seasonal patterns of Ae. aegypti and Ae. albopictus population dynamics that may be relevant to seasonal changes in dengue virus transmission. Our models can be integrated with Aedes and dengue modelling efforts to guide and evaluate vector control, better map the distribution of disease and produce early warning systems for dengue epidemics

    West Nile Virus Infection Decreases Fecundity of Culex tarsalis

    No full text
    corecore