240 research outputs found

    A 20 Ghz Depolarization Experiment Using the ATS-6 Satellite

    Get PDF
    A depolarization experiment using the 20 GHz downlink from the ATS-6 satellite was described. The following subjects were covered: (1) an operational summary of the experiment, (2) a description of the equipment used with emphasis on improvements made to the signal processing receiver used with the ATS-5 satellite, (3) data on depolarization and attenuation in one snow storm and two rain storms at 45 deg elevation, (4) data on low angle propagation, (5) conclusions about depolarization on satellite paths, and (6) recommendations for the depolarization portion of the CTS experiment

    In situ probing of surface hydrides on hydrogenated amorphous silicon using attenuated total reflection infrared spectroscopy

    Get PDF
    An in situ method based on attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) is presented for detecting surface silicon hydrides on plasma deposited hydrogenated amorphous silicon (a-Si:H) films and for determining their surface concentrations. Surface silicon hydrides are desorbed by exposing the a-Si:H films to low energy ions from a low density Ar plasma and by comparing the infrared spectrum before and after this low energy ion bombardment, the absorptions by surface hydrides can sensitively be separated from absorptions by bulk hydrides incorporated into the film. An experimental comparison with other methods that utilize isotope exchange of the surface hydrogen with deuterium showed good agreement and the advantages and disadvantages of the different methods are discussed. Furthermore, the determination of the composition of the surface hydrogen bondings on the basis of the literature data on hydrogenated crystalline silicon surfaces is presented, and quantification of the hydrogen surface coverage is discusse

    A depolarization and attenuation experiment using the COMSTAR and CTS satellites

    Get PDF
    Monthly and annual percent-of-time data on ground rain fall rate and attenuation on satellite downlinks at 11.7 GHz, 19.04 GHz, and 28.56 GHz is presented. Equal probability values of attenuation and rain rate are compared for monthly, quarterly, half-year periods and for the entire year. Regression equations relating cross polarization isolation to the logarithm of attenuation are also presented

    Strange Quark Contributions to Parity-Violating Asymmetries in the Backward Angle G0 Electron Scattering Experiment

    Get PDF
    We have measured parity-violating asymmetries in elastic electron-proton and quasi-elastic electron-deuteron scattering at Q^2 = 0.22 and 0.63 GeV^2. They are sensitive to strange quark contributions to currents in the nucleon, and to the nucleon axial current. The results indicate strange quark contributions of < 10% of the charge and magnetic nucleon form factors at these four-momentum transfers. We also present the first measurement of anapole moment effects in the axial current at these four-momentum transfers.Comment: 5 pages, 2 figures, changed references, typo, and conten

    Transverse Beam Spin Asymmetries at Backward Angles in Elastic Electron-Proton and Quasi-elastic Electron-Deuteron Scattering

    Get PDF
    We have measured the beam-normal single-spin asymmetries in elastic scattering of transversely polarized electrons from the proton, and performed the first measurement in quasi-elastic scattering on the deuteron, at backward angles (lab scattering angle of 108 degrees) for Q2 = 0.22 GeV^2/c^2 and 0.63 GeV^2/c^2 at beam energies of 362 MeV and 687 MeV, respectively. The asymmetry arises due to the imaginary part of the interference of the two-photon exchange amplitude with that of single photon exchange. Results for the proton are consistent with a model calculation which includes inelastic intermediate hadronic (piN) states. An estimate of the beam-normal single-spin asymmetry for the scattering from the neutron is made using a quasi-static deuterium approximation, and is also in agreement with theory

    Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering

    Get PDF
    We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 = 0.15, 0.25 (GeV/c)^2. The results are inconsistent with calculations solely using the elastic nucleon intermediate state, and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A_n provides a direct probe of the imaginary component of the 2-gamma exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.Comment: 5 pages, 3 figures, submitted to Physical Review Letters; shortened to meet PRL length limit, clarified some text after referee's comment

    Strange Quark Contributions to Parity-Violating Asymmetries in the Forward G0 Electron-Proton Scattering Experiment

    Get PDF
    We have measured parity-violating asymmetries in elastic electron-proton scattering over the range of momentum transfers 0.12 < Q^2 < 1.0 GeV^2. These asymmetries, arising from interference of the electromagnetic and neutral weak interactions, are sensitive to strange quark contributions to the currents of the proton. The measurements were made at JLab using a toroidal spectrometer to detect the recoiling protons from a liquid hydrogen target. The results indicate non-zero, Q^2 dependent, strange quark contributions and provide new information beyond that obtained in previous experiments.Comment: 5 pages, 2 figure

    In situ

    Full text link

    Constraints on the Nucleon Strange Form Factors at Q^2 ~ 0.1 GeV^2

    Get PDF
    We report the most precise measurement to date of a parity-violating asymmetry in elastic electron-proton scattering. The measurement was carried out with a beam energy of 3.03 GeV and a scattering angle =6 degrees, with the result A_PV = -1.14 +/- 0.24 (stat) +/- 0.06 (syst) parts per million. From this we extract, at Q^2 = 0.099 GeV^2, the strange form factor combination G_E^s + 0.080 G_M^s = 0.030 +/- 0.025 (stat) +/- 0.006 (syst) +/- 0.012 (FF) where the first two errors are experimental and the last error is due to the uncertainty in the neutron electromagnetic form factor. This result significantly improves current knowledge of G_E^s and G_M^s at Q^2 ~0.1 GeV^2. A consistent picture emerges when several measurements at about the same Q^2 value are combined: G_E^s is consistent with zero while G_M^s prefers positive values though G_E^s=G_M^s=0 is compatible with the data at 95% C.L.Comment: minor wording changes for clarity, updated references, dropped one figure to improve focu
    • …
    corecore