40 research outputs found

    EDS1 complexes are not required for PRR responses and execute TNL‐ETI from the nucleus in Nicotiana benthamiana

    Get PDF
    Heterodimeric complexes incorporating the lipase-like proteins EDS1 with PAD4 or SAG101 are central hubs in plant innate immunity. EDS1 functions encompass signal relay from TIR domain-containing intracellular NLR-type immune receptors (TNLs) towards RPW8-type helper NLRs (RNLs) and, in Arabidopsis thaliana, bolstering of signaling and resistance mediated by cell-surface pattern recognition receptors (PRRs). Increasing evidence points to the activation of EDS1 complexes by small molecule binding. We used CRISPR/Cas-generated mutant lines and agroinfiltration-based complementation assays to interrogate functions of EDS1 complexes in Nicotiana benthamiana. We did not detect impaired PRR signaling in N. benthamiana lines deficient in EDS1 complexes or RNLs. Intriguingly, in assays monitoring functions of SlEDS1-NbEDS1 complexes in N. benthamiana, mutations within the SlEDS1 catalytic triad could abolish or enhance TNL immunity. Furthermore, nuclear EDS1 accumulation was sufficient for N. benthamiana TNL (Roq1) immunity. Reinforcing PRR signaling in Arabidopsis might be a derived function of the TNL/EDS1 immune sector. Although Solanaceae EDS1 functionally depends on catalytic triad residues in some contexts, our data do not support binding of a TNL-derived small molecule in the triad environment. Whether and how nuclear EDS1 activity connects to membrane pore-forming RNLs remains unknown

    An EDS1-SAG101 Complex is Essential for TNL-mediated Immunity in Nicotiana benthamiana

    No full text
    International audienceHeterodimeric complexes containing the lipase-like protein ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) are regarded as central regulators of plant innate immunity. In this context, a complex of EDS1 with PHYTOALEXIN DEFICIENT4 (PAD4) is required for basal resistance and signaling downstream of immune receptors containing an N-terminal Toll-interleukin-1 receptor-like domain (TNLs) in Arabidopsis thaliana. Here we analyze EDS1 functions in the model Solanaceous plant Nicotiana benthamiana (Nb). Stable Nb mutants deficient in EDS1 complexes are not impaired in basal resistance, a finding which contradicts a general role for EDS1 in immunity. In Nb, PAD4 demonstrated no detectable immune functions, but TNL-mediated resistance responses required EDS1 complexes incorporating a SENESCENCE ASSOCIATED GENE101 (SAG101) isoform. Intriguingly, SAG101 is restricted to those genomes also encoding TNL receptors, and we propose it may be required for TNL-mediated immune signaling in most plants, except the Brassicaceae. Transient complementation in Nb was used for accelerated mutational analyses while avoiding complex biotic interactions. We identify a large surface essential for EDS1-SAG101 immune functions, which extends from the N-terminal lipase domains to the C-terminal EP domains and might mediate interaction partner recruitment. Further, this work demonstrates the value of genetic resources in Nb, which will facilitate elucidation of EDS1 functions

    Staying in the fold: The SGT1/chaperone machinery in maintenance and evolution of leucine-rich repeat proteins

    No full text
    The conserved eukaryotic protein SGT1 (suppressor of G2 allele of skp1) participates in diverse physiological processes such as cell cycle progression in yeast, plant immunity against pathogens and plant hormone signalling. Recent genetic and biochemical studies suggest that SGT1 functions as a novel co-chaperone for cytosolic/nuclear HSP90 and HSP70 molecular chaperones in the folding and maturation of substrate proteins. Since proteins containing the leucine-rich repeat (LRR) protein-protein interaction motif are overrepresented in SGT1-dependent phenomena, we consider whether LRR-containing proteins are preferential substrates of an SGT1/HSP70/HSP90 complex. Such a chaperone organisation is reminiscent of the HOP/HSP70/HSP90 machinery which controls maturation and activation of glucocorticoid receptors in animals. Drawing on this parallel, we discuss the possible contribution of an SGT1-chaperone complex in the folding and maturation of LRR-containing proteins and its evolutionary consequences for the emergence of novel LRR interaction surfaces

    Novel aspects of COP9 signalosome functions revealed through analysis of hypomorphic csn mutants

    No full text
    The COP9 signalosome (CSN) is a conserved eukaryotic protein complex implicated in the regulation of cullin-RING type E3 ubiquitin ligases by cleaving the small peptide RUB/Nedd8 from cullins. However, detailed analysis of CSN physiological functions in Arabidopsis has been hampered by the early seedling-lethality of csn null mutants. We and others have now identified a number of viable hypomorphic csn mutants which start to reveal novel CSN-dependent activities in adult Arabidopsis plants.1 Here, we present a detailed comparative analysis of the csn5a-1 and csn2-5 mutants as a mean to improve understanding of CSN functions in plant cells. Our observations point to CSN-independent activities of CSN5 and suggest a role of the CSN in cytoskeleton assembly/organization

    Dissection of TALE-dependent gene activation reveals that they induce transcription cooperatively and in both orientations.

    Get PDF
    Plant-pathogenic Xanthomonas bacteria inject transcription activator-like effector proteins (TALEs) into host cells to specifically induce transcription of plant genes and enhance susceptibility. Although the DNA-binding mode is well-understood it is still ambiguous how TALEs initiate transcription and whether additional promoter elements are needed to support this. To systematically dissect prerequisites for transcriptional initiation the activity of one TALE was compared on different synthetic Bs4 promoter fragments. In addition, a large collection of artificial TALEs spanning the OsSWEET14 promoter was compared. We show that the presence of a TALE alone is not sufficient to initiate transcription suggesting the requirement of additional supporting promoter elements. At the OsSWEET14 promoter TALEs can initiate transcription from various positions, in a synergistic manner of multiple TALEs binding in parallel to the promoter, and even by binding in reverse orientation. TALEs are known to shift the transcriptional start site, but our data show that this shift depends on the individual position of a TALE within a promoter context. Our results implicate that TALEs function like classical enhancer-binding proteins and initiate transcription in both orientations which has consequences for in planta target gene prediction and design of artificial activators

    Targeted gene deletion with Sp Cas9 and multiple guide RNAs in Arabidopsis thaliana : four are better than two

    No full text
    Abstract Background In plant genome editing, RNA-guided nucleases such as Cas9 from Streptococcus pyogenes (SpCas9) predominantly induce small insertions or deletions at target sites. This can be used for inactivation of protein-coding genes by frame shift mutations. However, in some cases, it may be advantageous to delete larger chromosomal segments. This is achieved by simultaneously inducing double strand breaks upstream and downstream of the fragment to be deleted. Experimental approaches for deletion induction have not been systematically evaluated. Results We designed three pairs of guide RNAs for deletion of the Arabidopsis WRKY30 locus (~2.2 kb). We tested how the combination of guide RNA pairs and co-expression of the exonuclease TREX2 affect the frequency of wrky30 deletions in editing experiments. Our data demonstrate that compared to one pair of guide RNAs, two pairs increase the frequency of chromosomal deletions. The exonuclease TREX2 enhanced mutation frequency at individual target sites and shifted the mutation profile towards larger deletions. However, TREX2 did not elevate the frequency of chromosomal deletions. Conclusions Multiplex editing with at least two pairs of guide RNAs (four guide RNAs in total) elevates the frequency of chromosomal deletions, and thus simplifies the selection of corresponding mutants. Co-expression of the TREX2 exonuclease can be used as a general strategy to increase editing efficiency in Arabidopsis without obvious negative effects

    Targeted gene deletion with SpCas9 and multiple guide RNAs in Arabidopsis thaliana: four are better than two

    No full text
    Abstract Background In plant genome editing, RNA-guided nucleases such as Cas9 from Streptococcus pyogenes (SpCas9) predominantly induce small insertions or deletions at target sites. This can be used for inactivation of protein-coding genes by frame shift mutations. However, in some cases, it may be advantageous to delete larger chromosomal segments. This is achieved by simultaneously inducing double strand breaks upstream and downstream of the segment to be deleted. Experimental approaches for the deletion of larger chromosomal segments have not been systematically evaluated. Results We designed three pairs of guide RNAs for deletion of a ~ 2.2 kb chromosomal segment containing the Arabidopsis WRKY30 locus. We tested how the combination of guide RNA pairs and co-expression of the exonuclease TREX2 affect the frequency of wrky30 deletions in editing experiments. Our data demonstrate that compared to one pair of guide RNAs, two pairs increase the frequency of chromosomal deletions. The exonuclease TREX2 enhanced mutation frequency at individual target sites and shifted the mutation profile towards larger deletions. However, TREX2 did not elevate the frequency of chromosomal segment deletions. Conclusions Multiplex editing with at least two pairs of guide RNAs (four guide RNAs in total) elevates the frequency of chromosomal segment deletions at least at the AtWRKY30 locus, and thus simplifies the selection of corresponding mutants. Co-expression of the TREX2 exonuclease can be used as a general strategy to increase editing efficiency in Arabidopsis without obvious negative effects
    corecore