68 research outputs found
Dissolved organic carbon dynamics in a UK podzolic moorland catchment: linking storm hydrochemistry, flow path analysis and sorption experiments
Better knowledge of spatial and temporal delivery of dissolved organic carbon (DOC) in small catchments is required to understand the mechanisms behind reported long-term changes in C fluxes from some peatlands. We monitored two storms with contrasting seasons and antecedent conditions in a small upland UK moorland catchment. We examined DOC concentrations and specific UV absorbance (SUVA at 285 nm), together with solute concentrations required to undertake end-member mixing analyses to define dominant flow paths contributing to streamflow. This was combined with laboratory soil-solution equilibrations. We aimed to resolve how seasonal biogeochemical processing of DOC and flowpath changes in organo-mineral soils combine to affect DOC exported via the stream. An August storm following a dry period gave maximum DOC concentration of 10 mg l<sup>−1</sup>. Small DOC:DON ratios (16–28) and SUVA (2.7–3.6 l mg<sup>−1</sup> m<sup>−1</sup>) was attributed to filtration of aromatic compounds associated with up to 53% B horizon flow contributions. This selective filtration of high SUVA DOC was reproduced in the experimental batch equilibration system. For a November storm, wetter antecedent soil conditions led to enhanced soil connectivity with the stream and seven times greater DOC stream-load (maximum concentration 16 mg l<sup>−1</sup>). This storm had a 63% O horizon flow contribution at its peak, limited B horizon buffering and consequently more aromatic DOC (SUVA 3.9–4.5 l mg<sup>−1</sup> m<sup>−1</sup> and DOC:DON ratio 35–43). We suggest that simple mixing of waters from different flow paths cannot alone explain the differences in DOC compositions between August and November and biogeochemical processing of DOC is required to fully explain the observed stream DOC dynamics. This preliminary evidence is in contrast to other studies proposing hydrological controls on the nature of DOC delivered to streams. Although our study is based only on two storms of very different hydrological and biogeochemical periods, this should promote wider study of DOC biogeochemical alteration in headwaters so that this be better incorporated in modelling to predict the impacts of changes in DOC delivery to, and fate in, aquatic systems
Recommended from our members
Balancing macronutrient stoichiometry to alleviate eutrophication
Reactive nitrogen (N) and phosphorus (P) inputs to surface waters modify aquatic environments and affect public health and recreation. Until now, source control is the dominating measure of eutrophication management, and biological regulation of nutrients is largely neglected, although aquatic microbial organisms have huge potential to process nutrients. The stoichiometric ratio of organic carbon (OC) to N to P atoms should modulate heterotrophic pathways of aquatic nutrient processing, as high OC availability favours aquatic microbial processing. Such microbial processing removes N by denitrification and captures N and P as organically-complexed, less eutrophying forms. With a global data synthesis, we show that the atomic ratios of bioavailable dissolved OC to either N or P in rivers with urban and agricultural land use are often distant from a ‘microbial optimum’. This OC-deficiency relative to high availabilities of N and P likely overwhelms within-river heterotrophic processing and we propose that the capability of streams and rivers to retain N and P may be improved by active stoichiometric rebalancing. This rebalancing should be done by reconnecting appropriate OC sources such as wetlands and riparian forests, many of which have become disconnected from rivers concurrent to the progress of agriculture and urbanization. However, key knowledge gaps leave questions in the safe implementation of this approach in management: Mechanistic research is required to (i) evaluate system responses to catchment inputs of dissolved OC forms and amounts relative to internal-cycling controls of dissolved OC from aquatic production and particulate OC from aquatic and terrestrial sources and (ii) evaluate risk factors in anoxia-mediated P desorption with elevated OC scenarios. Still, we find this to be an approach with high potential for river management and we recommend to evaluate this stoichiometric approach for alleviating eutrophication, improving water quality and aquatic ecosystem health
Factors affecting the spatial and temporal distribution of E. coli in intertidal estuarine sediments
Funding: University of St Andrews, The James Hutton Institute. DMP received funding from the Marine Alliance for Science and Technology for Scotland (MASTS), funded by the Scottish Funding Council (grant reference HR09011).Microbiological water quality monitoring of bathing waters does not account for faecal indicator organisms in sediments. Intertidal deposits are a significant reservoir of FIOs and this indicates there is a substantial risk to bathers through direct contact with the sediment, or through the resuspension of bacteria to the water column. Recent modelling efforts include sediment as a secondary source of contamination, however, little is known about the driving factors behind spatial and temporal variation in FIO abundance. E. coli abundance, in conjunction with a wide range of measured variables, was used to construct models to explain E. coli abundance in intertidal sediments in two Scottish estuaries. E. coli concentrations up to 6 log10 CFU 100 g dry wt-1 were observed, with optimal models accounting for E. coli variation up to an adjusted R2 of 0.66. Introducing more complex models resulted in overfitting of models, detrimentally effected the transferability of models between datasets. Salinity was the most important single variable, with season, pH, colloidal carbohydrates, organic content, bulk density and maximum air temperature also featuring in optimal models. Transfer of models, using only lower cost variables, between systems explained an average deviance of 42 %. This study demonstrates the potential for cost-effective sediment characteristic monitoring to contribute to FIO fate and transport modelling and consequently the risk assessment of bathing water safety.PostprintPeer reviewe
The effects of H2SO4 and (NH4)2SO4 treatments on the chemistry of soil drainage water and pine seedlings in forest soil microcosms
International audienceAn experiment comparing effects of sulphuric acid and reduced N deposition on soil water quality and on chemical and physical growth indicators for forest ecosystems is described. Six H2SO4 and (NH4)2SO4 treatment loads, from 0 ? 44 and 0 ? 25 kmolc ha-1 yr-1, respectively, were applied to outdoor microcosms of Pinus sylvestris seedlings in 3 acid to intermediate upland soils (calc-silicate, quartzite and granite) for 2 years. Different soil types responded similarly to H2SO4 loads, resulting in decreased leachate pH, but differently to reduced N inputs. In microcosms of calc-silicate soil, nitrification of NH4 resulted in lower pH and higher cation leaching than in acid treatments. By contrast, in quartzite and granite soils, (NH4)2SO4 promoted direct cation leaching, although leachate pH increased. The results highlighted the importance of soil composition on the nature of the cations leached, the SO4 adsorption capacities and microbial N transformations. Greater seedling growth on calc-silicate soils under both treatment types was related to sustained nutrient availability. Reductions in foliar P and Mg with higher N treatments were observed for seedlings in the calc-silicate soil. There were few treatment effects on quartzite and granite microcosm tree seedlings since P limitation precluded seedling growth responses to treatments. Hence, any benefits of N deposition to seedlings on quartzite and granite soils appeared limited by availability of co-nutrients, exacerbated by rapid depletion of soil exchangeable base cations. Keywords: acidification, manipulation, nitrogen, ammonium, deposition, soil, drainage, pine, microcosms, fores
The composition, leaching, and sorption behavior of some alternative sources of phosphorus for soils
Inter- and intra-species intercropping of barley cultivars and legume species, as affected by soil phosphorus availability
Aims: Intercropping can improve plant yields and
soil phosphorus (P) use efficiency. This study
compares inter- and intra-species intercropping,
and determines whether P uptake and shoot biomass
accumulation in intercrops are affected by
soil P availability.
Methods: Four barley cultivars (Hordeum vulgare L.)
and three legume species (Trifolium subterreneum,
Ornithopus sativus and Medicago truncatula) were selected
on the basis of their contrasting root exudation
and morphological responses to P deficiency. Monocultures
and barley-barley and barley-legume intercrops
were grown for 6 weeks in a pot trial at very limiting,
slightly limiting and excess available soil P. Aboveground
biomass and shoot P were measured.
Results: Barley-legume intercrops had 10–70%
greater P accumulation and 0–40% greater biomass
than monocultures, with the greatest gains occurring
at or below the sub-critical P requirement for
barley. No benefit of barley-barley intercropping
was observed. The plant combination had no significant
effect on biomass and P uptake observed
in intercropped treatments.
Conclusions: Barley-legume intercropping shows
promise for sustainable production systems, especially
at low soil P. Gains in biomass and P uptake
come from inter- rather than intra-species
intercropping, indicating that plant diversity resulted
in decreased competition between plants for P
Design and Performance of a Novel Low Energy Multi-Species Beamline for the ALPHA Antihydrogen Experiment
The ALPHA Collaboration, based at the CERN Antiproton Decelerator, has
recently implemented a novel beamline for low-energy ( 100 eV)
positron and antiproton transport between cylindrical Penning traps that have
strong axial magnetic fields. Here, we describe how a combination of
semianalytical and numerical calculations were used to optimise the layout and
design of this beamline. Using experimental measurements taken during the
initial commissioning of the instrument, we evaluate its performance and
validate the models used for its development. By combining data from a range of
sources, we show that the beamline has a high transfer efficiency, and estimate
that the percentage of particles captured in the experiments from each bunch is
(78 3)% for up to antiprotons, and (71 5)% for bunches of
up to positrons.Comment: 15 pages, 15 figure
Response-based selection of barley cultivars and legume species for complementarity:root morphology and exudation in relation to nutrient source
Phosphorus (P) and nitrogen (N) use efficiency may be improved through increased biodiversity in agroecosystems. Phenotypic variation in plants’ response to nutrient deficiency may influence positive complementarity in intercropping systems. A multicomponent screening approach was used to assess the influence of P supply and N source on the phenotypic plasticity of nutrient foraging traits in barley (H. vulgare L.) and legume species. Root morphology and exudation were determined in six plant nutrient treatments. A clear divergence in the response of barley and legumes to the nutrient treatments was observed. Root morphology varied most among legumes, whereas exudate citrate and phytase activity were most variable in barley. Changes in root morphology were minimized in plants provided with ammonium in comparison to nitrate but increased under P deficiency. Exudate phytase activity and pH varied with legume species, whereas citrate efflux, specific root length, and root diameter lengths were more variable among barley cultivars. Three legume species and four barley cultivars were identified as the most responsive to P deficiency and the most contrasting of the cultivars and species tested. Phenotypic response to nutrient availability may be a promising approach for the selection of plant combinations for minimal input cropping systems
Linking the depletion of rhizosphere phosphorus to the heterologous expression of a fungal phytase in Nicotiana tabacum as revealed by enzyme-labile P and solution 31P NMR spectroscopy
Root exudation of phytase could improve the ability of plants to access organic forms of soil phosphorus (P), thereby minimizing fertilizer requirements and improving P use efficiency in agroecosystems. After 75 days growth in a high available P soil, shoot biomass and P accumulation, soil pH, and rhizosphere P depletion were investigated in Nicotiana tabacum wild-type and transgenic plant-lines expressing and exuding Aspergillus niger phytase (ex::phyA), or a null-vector control. Solution 31P NMR analysis revealed a 7% to 11% increase in orthophosphate and a comparable depletion of undefined monoester P compounds (-13 to -18%) in the rhizosphere of tobacco plants relative to the unplanted soil control. Wild-type plants had the greatest impact on the composition of rhizosphere P based on the depletion of other monoester P, polyphosphate, and phosphonate species. The depletion of phytase-labile P by ex::phyA plants was associated with decreased proportions of other monoester P, rather than myo-InsP6 as expected. Rhizosphere pH increased from 6.0 to 6.5–6.7 in transgenic plant soils, beyond the pH optimum for A. niger phyA activity (pH=5), and may explain the limited specificity of ex::phyA plants for phytate in this soil. The efficacy of single exudation traits (e.g., phytase) therefore appear to be limited in P-replete soil conditions and may be improved where soil pH matches the functional requirements of the enzyme or trait of interest
- …