997 research outputs found

    Positron production by pulsars

    Get PDF
    Calculations based on two specific pulsar models show that in either case the 511 keV gamma-ray line from the galactic center can be explained as the as the result of the annihilation of positrons produced by pulsars

    The cooling and condensation of flare coronal plasma

    Get PDF
    A model is investigated for the decay of flare heated coronal loops in which rapid radiative cooling at the loop base creates strong pressure gradients which, in turn, generate large (supersonic) downward flows. The coronal material cools and 'condenses' onto the flare chromosphere. The features which distinguish this model from previous models of flare cooling are: (1) most of the thermal energy of the coronal plasma may be lost by mass motion rather than by conduction or coronal radiation; (2) flare loops are not isobaric during their decay phase, and large downward velocities are present near the footpoints; (3) the differential emission measure q has a strong temperature dependence

    Influence of magnetic field structure on the conduction cooling of flare loops

    Get PDF
    A simple model facilitates calculation of the influence of magnetic field configuration on the conduction cooling rate of a hot post-flare coronal plasma. The magnetic field is taken to be that produced by a line dipole or point dipole at an arbitrary depth below the chromosphere. For the high temperatures (T greater than or equal to 10 to the 7th power K) produced by flares, the plasma may remain static and isobaric. The influence of the field is such as to increase the heat flux (per unit area) into the chromosphere, but to decrease the total conduction cooling of the flare plasma. This leads to a significant enhancement of the total energy radiated by the flare plasma

    Clusters in the distribution of pulsars in period, pulse-width, and age

    Get PDF
    The question of whether pulsars form a single group or whether pulsars come in two or more different groups is discussed. It is proposed that such groups might be related to several factors such as the initial creation of the neutron star, or the orientation of the magnetic field axis with the spin axis. Various statistical models are examined

    Evaporative cooling of flare plasma

    Get PDF
    A one-dimensional loop model for the evaporative cooling of the coronal flare plasma was investigated. Conductive losses dominated radiative cooling, and the evaporative velocities were small compared to the sound speed. The profile and evolution of the temperature were calculated. The model was in agreement with soft X-ray observations on the evolution of flare temperatures and emission measures. The effect of evaporation was to greatly reduce the conductive heat flux into the chromosphere and to enhance the EUV emission from the coronal flare plasma

    Particle acceleration in axisymmetric, magnetized neutron stars

    Get PDF
    The potential drop in the polar cap region of a rotating, magnetized neutron star is found assuming that the magnetic field is dipolar, with the field aligned (or anti-aligned) with the rotation axis. The curvature of the field lines is of critical importance. Charge flow is assumed to be along magnetic field lines. The electric field has a maximum at radius 1.5 R and the magnitude and functional form of the current is determined

    Comparative Analysis of Super-Kamiokande and SNO Solar-Neutrino Data and the Photospheric Magnetic Field

    Get PDF
    We analyze Super-Kamiokande, SNO, and photospheric magnetic-field data for the common time interval, namely the SNO D2O phase. Concerning rotational modulation, the magnetic-field power spectrum shows the strongest peaks at the second and sixth harmonics of the solar synodic rotation frequency [3 nu(rot) and 7 nu(rot)]. The restricted Super-Kamiokande dataset shows strong modulation at the second harmonic. The SNO D2O dataset shows weak modulation at that frequency, but strong modulation in the sixth-harmonic frequency band. We estimate the significance level of the correspondence of the Super-Kamiokande second-harmonic peak with the corresponding magnetic-field peak to be 0.0004, and the significance level of the correspondence of the SNO D2O sixth-harmonic peak with the corresponding magnetic-field peak to be 0.009. By estimating the amplitude of the modulation of the solar neutrino flux at the second harmonic from the restricted Super-Kamiokande dataset, we find that the weak power at that frequency in the SNO D2O power spectrum is not particularly surprising. Concerning 9.43 yr-1, we find no peak at this frequency in the power spectrum formed from the restricted Super-Kamiokande dataset, so it is no surprise that this peak does not show up in the SNO D2O dataset, either.Comment: 32 pages, 8 tables, 16 figure

    Cascade model of gamma-ray bursts: Power-law and annihilation-line components

    Get PDF
    If, in a neutron star magnetosphere, an electron is accelerated to an energy of 10 to the 11th or 12th power eV by an electric field parallel to the magnetic field, motion of the electron along the curved field line leads to a cascade of gamma rays and electron-positron pairs. This process is believed to occur in radio pulsars and gamma ray burst sources. Results are presented from numerical simulations of the radiation and photon annihilation pair production processes, using a computer code previously developed for the study of radio pulsars. A range of values of initial energy of a primary electron was considered along with initial injection position, and magnetic dipole moment of the neutron star. The resulting spectra was found to exhibit complex forms that are typically power law over a substantial range of photon energy, and typically include a dip in the spectrum near the electron gyro-frequency at the injection point. The results of a number of models are compared with data for the 5 Mar., 1979 gamma ray burst. A good fit was found to the gamma ray part of the spectrum, including the equivalent width of the annihilation line

    Environmental effects on magnetic fluorescent powder development of fingermarks on bird of prey feathers

    Get PDF
    A comparison study of the effects of environmental conditions on the development of latent fingermarks on raptor feathers using green magnetic fluorescent powder was undertaken using both sebaceous loaded and natural fingermark deposits. Sparrowhawk feathers were stored in indoor conditions for 60 days (Study 1), and buzzard feathers were left exposed to two different environmental conditions (hidden and visible) for 21 days (Study 2), with developments made at regular ageing periods. In Study 1, latent fingermarks were successfully developed (Grade 1–4) on the indoor feathers up to 60 days after deposition – 98.6% of the loaded deposits and 85.3% for natural deposits. Under outdoor conditions in Study 2, both loaded and natural deposits were affected by environmental exposure. Latent fingermarks were successfully developed up to 14 days after deposition on the outdoor feathers, with some occasional recovery after 21 days. The visible feathers recorded 34.7% (loaded) and 16.4% (natural) successful developments (Grade 1–4), whereas the hidden feathers recorded 46.7% (loaded) and 22.2% (natural) successful developments, suggesting that protection from the environment helps to preserve latent fingermarks on the surface of a feather. Environmental exposure accelerated the deterioration of ridge detail and the number of successful developments

    Pulsar extinction

    Get PDF
    Radio emission from pulsars, attributed to an instability associated with the creation of electron-positron pairs from gamma rays was investigated. The condition for pair creation therefore lead to an extinction condition. The relevant physical processes were analyzed in the context of a mathematical model, according to which radiation originated at the polar caps and magnetic field lines changed from a closed configuration to an open configuration at the force balance or corotation radius
    • …
    corecore