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EVAPORATIVE COOLING OF FLARE PLASMA

by

S.K. Antiochos and P.A. Sturrock

Institute for Plasma Research
and

Department of Applied Physics
Stanford University
Stanford, California

ABSTRACT

We investigate a one-dimensional loop model for the evaporative

cooling of the coronal flare plasma. The important assumptions are

that conductive losses dominate radiative cooling and that the evapora-

tive velocities are small compared to the sound speed. We calculate

the profile and evolution of the temperature and verify that our assump-

tions are accurate for plasma parameters typical of flare regions.

The model is in agreement with soft x-ray observations on the evolution

of flare temperatures and emission measures. The effect of evaporation

to greatly reduce the conductive heat flux into the chromosphere

and to enhance the EUV emission from the coronal flare plasma.
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I.	 Introduction

It is becoming widely accepted that flares evaporate large masses

of chromospheric material	 into the corona.	 The most compelling arguments

for the occurrence of this process come from soft x-ray observations.

Measurements of the emission measure, which appear to be well over

1050 cm
-3
 for some	 flares	 (Phillips and Neupert, 	 1973),	 indicate a

total mass of hot	 (T z 10	 K ) plasma	 in the corona as	 large as	
1016 g.

Similar mass estimates are obtained from loop prominence systems which

are known to occur in post-flare regions	 (Jefferies	 and Orrall,	 1965).

This amount of plasma is too large to condense from the corona and must

somehow be extracted from the chromosphere.

Neupert	 (1968) was perhaps	 the first	 to realize that corona flare

plasma is the result of evaporation from the chromosphere. 	 Similar

ideas were expressed subsequently by Hudson and Ohki 	 (1972) and by

Sturrock	 (1973).	 In these papers,	 it was	 implicitly assumed that

evaporation occurs during the initial deposition of energy into the

chromosphere by means of high-energy electron streams. 	 However,	 there
a

appears to be observational evidence for evaporation during the decay

phase of flares.	 the emission measure is often seen to increase while

the total thermal energy does nut increase and the temperature decreases

(Kahler et al.,	 1970; Horan,	 1971).	 "Moving boundary" types of models

have been prcoosea,	 to explain these results,	 by Strauss and Papagiannis

(19"71) and b y Zauman and Acton	 (1974).	 These models	 involve	 the	 assumpti,3n

that	 flare beating occurs only at the 	 top of a	 loop of coronal	 plasma,

which results in an expanding hot region. 	 The	 loop is assumed to be

essentially infinite	 in length so that the effect of the heating on

c
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the chromosphere is not included. However, these models encounter

certain difficulties: in particular, they cannot account for the origin

of the large masses required by tha soft x-ray observations. Further-

more, if the "moving boundary" models were correct, flares should heat

i
the corona well before they heat the chromosphere, whereas observations

indicate that the Hoe emission of flares begins well before the soft

x-ray maximum. We therefore take the view that the increase of emission

measare during the decay phase of a flare indicates that evaporation

occurs not only during the impulsive phase of a flare but also during

the decay phase.

From the above considerations, it appears that =here may be two

evaporation mechanisms occurring during a solar flare. One i. , , associated

with the direct heating of the chromosphere by the energy released

during the impulsive phase of a flare, the energy probably being trans-

ferred by an electron stream. This stage is likely to involve large

pressure gradients and large velocities, quite possibly leading to

shock waves. It seems likely that a separate evaporation process may

occur after the primary energy release is finished, this evaporation

being driven by the large conductive heat flux from the high-tempera- 	 a

tore flare plasma contained in magnetic flux tubes above the chromosphere.

In this stage, evaporation is a cooling process competing with radiation.

i
It seems likely that energy loss by evaporation dominates early in the

decay phase, and energy loss by radiation dominates later, when the

density of flare plasma is higher and the temperature is lower. More-

over, it seems likel y that this evaporation stage would involve only

small pressure gradients and velocities.	 It is this later, "gentle",

evaporation process which we discuss in this article.
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II. Model

Since the magnetic field strength in typical post-flare regions

appears to be large (B Z 10 g, Rust and Bar, 1973), we assume that it

dominates the plasma so that mass flow and heat transfer are both

parallel to the magnetic field. The geometry which we adopt is that

of a flare loop consisting of a narrow current-free flux tube with the

independent variable s measuring distance along the loop (parallel to B)

from the top of the loop. The cross-sectional area of the flux tube

is given by A(s) and will depend on the form of the magnetic field.

The field is assumed to be that of a point-dipole or of a line-dipole,

but we also calculate the case of a loop of constant cross section

corresponding approximately to the familiar plane-parallel model.

We make two assumptions on the state of the plasma. The first is

that radiation losses are negligible. We later check our assumption

by comparing the radiative cooling time with the conductive cooling

time to be derived below.

Our second assumption is that the velocities generated by the

evaporation process are small compared with the speed of sound. Since

the temperature is high enough that gravitational effects are negligible

(i.e., the scale height is large com pared with the size of the flux

tube), this assumption is equivalent to setting

^°. 0	 (2.1)

I	 iL _ ,y seer,, paradoxical tnat we can calculate the

plasma velocities by neglecting the pressure gradients, since these

gradients create the velocities in the first place. However, one

L	 4
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finds that, if the grav'tational term is negligible, the fractional

variation of pressure along the flux tube is of order M2 , where the

Mach number M is given by

M = v/C	 (2.2)

where C is the speed of sound. Hence our assumption (2.1) is equivalent 	 $

to the assumption that M GC 1, which must be verified a posteriori.

Equation (2.1) shows that the pressure is independent of s. We

assume that there is no heat input into the loop, and we ignore

radiation. Hence the total energy in the loop is constant, which

implies that the pressure is also independent of time-.

p(s,t) = const.	 (2.3)

On using equation (2.2,, one finds that the energy equation may be

expressed as
i

_) __

	

2 p ( t + v a/	 A ^s (AK ;)s)	 (2.4 1

On combining equation (2.4) with the continuity equation
1

(2.5)

we obtain

^t[A(,̂v - K^S = 0	 (2.6)
as
	 J

We see from (2.6) that

A(2pv - KS) = f(t) 	 (2.7 )

5
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The temperature of the chromosphere (the base of our model) is

sufficiently low that the heat flux F, given by

F = - KT
	

'2.+3)

may be neglected. Similarly, the density there is so high that the

mass velocity v may be neglected. These boundary conditions thus lead

to the simple relation

_ 2 K aT
(2.9 )5 p ^s 

which may alternatively be expressed as

F = - 5- pv	 (2.10)

Equation (2.10) can also be obtained from the symmetry of the loop since

if the loop is symmetric about the top, it follows that F and v must

vanish there.

The hc!at equation may now be expressed with only temperature as

dependen t. variable. On replacing v in equation (2.4) by the expression

(2.9), and then eliminating P in favor of T by means of the equation

of state, we obtain

2

2 

T ^t = 1 as 1^ K^S / - T'2)s )	 (2.11

1!e use the Spitzer (1962) formula for thermal conductivity,

K = at T5/2	 (2.12)

where, with sufficient accuracy for our purposes, we may take t y = 1')-6.

Equation	 is nonlinear, but it is amenable to solution by

separation of variables. We assume that T is of thu form

6
14
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T(s,t) = TM 6(t)cp(s)	 .	 (2.13)

For convenience, we choose

A(0) = 1	 cp(o) = 1	 (2.11+)

so that TM is the maximum temperature of the plasma (the initial

temperature at the top of the loop). We may substitute (2.13) into

equation (2.11) and obtain

_

 p	

d	 -712	 1 d	 d)_ 2 1 d,i 2

2 aT '/2 'it ( e 	- A ds ('ads /	 7 t 'd	 (2.15 )

rt

where ^ (s) is related to cp(s) by

t = (P
7/2	

(2.16)

In equatio!: (2.15), :he viriablFs are separated so that we may

set each side equal to -k2 (independent of both t and s). The

equation for 9(t),

aT 
'/2

a^ ( ^-7/2) _ 5 ^	 k2 	 (2.17)

may be integrated to give

0(t) _ (1 + t/T c 
) -2/7	 (2. 18)

where

T =	 5n	 (2. 11) )
c 2aTM7/2k2

The equation for * becomes

	

d 2 $ _ 2 1 (L^ ')2 + 1 dA d ^	 - k
2 	(2.20)

2	 7 1 I ds	 A ds ds
u.7

I	 4
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We see from equation (2.14) and the symmetry of the flare loop that

we require that

= 1, ds = 0 at s = 0	 (2.21)

r

However, if s  is the value of s at the "base" of the model (i.e., at 	 i

the chromosphere), the temperature must drop to the low chromospheric

value at s b . For our purposes, it is convenient to set

^ ( s b ) = 0	 .	 (2.22)

The position of the chromosphere will actually be not at the point

where ^ = 0 (i.e. T = )), but where T -- 104 K, but this difference

is small compared with the size of typical flare loops. The conditions

(2.21) anu (2.22) can be met only for a unique value of k in equation

(2.20). This value will of course depend implicitly also on the area

function A(s). For either type of magnetic-field tube (that produced

by a point dipole or that produced by a line dipole), we shall wish

co consider a range of values of s b . Rather than prescribe s  and

then determine k as an eigenvalue of the differential equation (2.20),

it is clearly simpler to consider a range of values of k and determine

s b for each value. This may be done by finding a solution of the

equation with the initial conditions (2.21), and then finding the point

; b at which	 0.

8
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III.	 Results

(a)	 Temperature Profile

For the case of a loop of constant cross-section, equ

can he integrated directly yielding:

	

_3 / 2	 /̂^
1	 CU	 _ 

w^ 1/4 ) F '^ (w), sin 750

	

^+ 1 — ^	 3

+ 2.3 1/4 E'5(ca), sin 75 0) = 2 Vi ks ,

where

(^P )- 
1 +^^/ ^= arc cos ^

^f + 1

and F and E are the.ellintic integrals of the first and se

respectively. The constant k can now be expressed in term

position s  of the base. Using equations (3.1) and (3.2),

for the pljnar case,

k = 1.E9/sb

For loops of variable cross-section, equation (2.20) has been

integrated numerically. The important parameters that characterize the

geometry are the loop length s  and the ratio of the cross-sectional

area A(0) at the top of the loop to the area A(s b ) at the base. We

term this ratio the "compression factor" r:

r = A(0)/A(s b ) = B(s b )/B(0)	 (3.4)

Rust and Bar (1973) find that r e5; 30 in the flare of august 	 197?.

9
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.l" dTl-1H(T)	 IT  ds	 ' (3.5)

For a given form of A(s), we may solve equation (2.20) for tpis'.

In Figure 3.1 we plot the temperature scale height H implied by our

model,

as a function of temperature along the loop. This is done for the

case of a constant-area loop and for a flux tube due to a line-dipole

source: with a compression factor r = 30. The results for a point-dipole

source are almost identical to those of a lire-dipole. The fact that

the scale height H becomes infinite at the top of the loop simply

reflects the fact that tl,-- spatial derivative of the temperature is

zero at the top of the loop. This peculiarity is without physical

significance; it simply means that the spatial var.ation of temperature

is determined by the second derivative of the temperature rather than

'he first derivative.

The true size scale over which T varies is, of course, less than

the loop length. For T < 10 -1 , the scale height is small compared to

the loop length, H(T) < 1J -2 s b , and decreases as T 5 ` in both the

constant-area and the variable-area cases. The loop would therefore

appear to an observer to be almost isothermal with a very thin transi-

tion region, as is the case for the quiet corona.

For comparison we also plot in Figure 3.1 the temperature scale

height given by the static model discussed by Antiochos ante Sturrock

(147h). From this figure we find that at lcw temperatures 1 <

i
the temperature profile is given by: "I' Ix s ? ' 5 for evaporative cooling,

and T x s G	for static cooling. Hence the heat flux F is linearly



     

proportional to T in the Fvavorative models, whereas F 	 const. in the

static models. This res,ilt argues strongly in favor of the evaporative

models.

For temperatures and size scales typical of flares, the heat flux

into the chromosphere implied by the static models is very large, in

excess of 10 ergs cm	 s- 1 . It. is difficult for static models to

account for the dissipation of such a large flux; however, in our

present model this flux is reduced by the evaporation process. The

heat flux into the chromosphere is approximately three orders of

magnitude lower for an evaporative mode]. than for a static model.

(b)	 Cooling Time Scale

We can evaluate the cooling time Tc in equation (2.18) by using

equation (3.3). For typical loop parameters,

1-10 K, n — U ) .I cm-3 and s b -111)	 cm , (3.6)

equations (2.1y) and (3.3) yield

	

T	 ^ 1^'^` sec.	 l_' • , I
c

Che radiative cooling time is given by

	

T	 p	 ('.3)

	

R	 n^n(T)

where n(T) has been computed by Raymond et al. (1976). For the above

parameters (3.6), we find that T  „ 10' sec; hence, our assumption that

conauccion dominates the cooling is justified. However, as the tempera-

ture decreases the ratio T c /T R increases until eventually radiation

dominates and evaporation becomes unimportant. For the loop described

above, we expect this to occur at T S 5 x 1"'(' K.

11
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We .lave also calculated the cooling times for loops dice to either

a point dipole or line dipole source. The effect of the geometry is

shown in Figure 3.2, where we plot the ratio of the cooling times for

a 1-op and for a planar (constant cross-section) model as a function

of T. As in the static case (Antiochos and Sturrock, 19"76), the effect

of the compression factor is to increase the cooling time; however,

we still ex pect that conduction dominates over radiation during the

initial stages if T ;?P
7
 K.

The other main assumption in our model is that the evaporation

velocities are small compared to the speed of sound. For the planar

case, the Mach number can be obtained directly from equations (2.9)

and (3.1':

3

M =	 = 1) -10.6, TM	 CD 112 (1 - tp3'/2)112 ( 1 +	 )-6/7	 (3.9)
b	 c

The maximum value of M occurs at t = 0 and c;, _ (2/5) 2/3 pt5 .5. For

the parameters in `?.6), we find that M S 1 -1 , so that our assumption

is valid. From the form of the time-dependence of M and T, we find

that M « T S for fixed s, hence our nnnroximntion improves as the

loop cools.

(Ic)	 Radiation

Various authors have attempted to calculate the emission measure

and the temnerature of flare regions from soft x-ray observations

(e.g. Kahler et al., 1970; Horan, 1('% 1 . Craig and Brown (1976)

poinu out that these. calculations are inherently inaccurate, and

suggest that one should instead assume a definite model for the

structure of a flare region and then test this model by comparing the

exnected radiation with observations. We, therefore, calculate the

l^
^LI^pRODUGLi^iLl`fY t)L'
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evolution of the soft x-ray emission

mode?.

Generally, the observations con

flux of x-rays in some energy range.

r(E I , E2, t) sf 
E 2

E1

predicted by our evaporative loop

list of measurement of the total

Hence we must compute

dE rd 3x T)(E, x, t)	 (3-10)
V

where the spatial integration is over the volume of the loop and Tj

is the energy flux at the earth from a unit volume of plasma. If the

dominant radiation process is bremsstrahlung, the emissivity 'n(keV

cm -3 s -1 keV -1 ) is given by

T)= ae
-E/kT 

n2T-1/2 ,	 (3:11 )

E

where a = 10 -38.09 for T in 0K, (Kahler et al., 1970). Using equations

(3.1) and (3.11) and integrating equation (3.10) over E, we obtain for

a loop of constant cross-section A:

	

rl	 r2

J(r l , r2 , 
t) = C  

8-3/2 (t
J/

dco e ^/	 ,	 (3.12 )
0	 J 1

where

2

-13.8 pAsb
C 1 = 10	 3/2

and

	

F. 1 	E 2

	

L  = kT	 r2 = kTM	 (3.14 )
M

In Figure 3.3 we plot L for the particular values r l = 112 and

r2 = 1 as a function of t/T c . Assuming a maximum loop temperature

(3.13 )

i'	 13



TM = 2 X 10  K, these values for r  and r 2 correspond to a soft x-ray

range from 1 - 2 keV. We also plot the time dependence of the temperature

and of the c:ission measure in Figure 3.3. Note that even though the

temperature is continuously decreasing, ,f increases initially due to the

increasing emission measure and has a maximum at t/T c = 50. For larger

values of r  and r,,, e.g, r l = 2 (E 1 = 4 keV) and r2 = 4 (E 2 = 2 keV),

the exponential term in the emissivity (3.11) dominates, and L decreases

monotonically. We find that these results are insensitive to she

compression factor I" because the x-ray emission comes mainly from the

high-temperature material high in the loop.

The qualitative features of Figure 3.3 are in agreement with soft

x-ray observations. However, we would not expect to find detailed

agreement, since we have calculated the emission from only a single

loop, whereas a flare is likely to consist of many Loops at different

stages in their evolution. In addition, we have neglected anv heating

which may be - , resent during the decay phase of flares. However, our

results do predict a rise in soft x-ray flux concurrent with a decrease

in temperature, whereas in the static models the emission must decrease

with the temperature.

We believe that a strong observational test of our model may lie

in the spectrum of the radiation. From the form of the scale height,

Figure 3.1, we note that an evaporative loop contains relatively more

plasma at low temperatures (6 10 6 K) than does a static one, which

im p lies that the s pectra of the emitted radiation (especially at EUV

wavelengths) should be significantly different in the two cases. This

is clearly illustrated in Figure 3.4 where we plot, for both models,

14
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the total radiative losses e(T) due to plasma at different temperatures

along the loop, i.e.

e(T) = n2A(T)  H (T )	 (3-15)

where we use Cox and Tucker's (1969) values for A(T), and H and n are

in units of loo p length s b , and density at the top of the loop n(s = 0),

respectively. The temperature at the top of the loop is assumed to be,

T 	 10 7 K. We note that in the static case the highest temperature

plasma is responsible for most of the energy loss whereas, in the

evaporative loop, plasma at — 5 X 10 5 K radiates most strongly. In a

later pa per we intend to calculate the s pectra for both models in detail,

in particu!.ar the emission in various EUV and x-ray lines, and to compare

these calculations with recent Skylab observations.

1-

n
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Figure Captions

Figure 3.1: The temperature scale height as a function of temperature

along the loop for three models. The top solid line refers

to an evaporative model of constant cross-section. The

broken line refers to an evaporative model for a loop due

to a line-dipole source with T = 30. 7'he bottom solid

line refers to a static model of constant cross-section.

Figure 3.2: Ratio of cooling times for a variable cross-section model

as a function of F. The solid line refers to a loop due to

• point-dipole source and the broken line to a loop due to

• line-dipole source.

Figure 3.3: The ev , :ution of the soft x-ray emission X between 1 - 2

keV, the temperature T, and the emission measure (E.M.)
f

for a loop of initial temperature, T M = 2 X 107 K.	 i

Figure 3.4: The radiative losses per unit logarithmic temperature interval

of plasma in a loop as a function of temperature along the

loop. The top line refers to an evaporative model and the

bottom line refers to a static model.
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