7,702 research outputs found
Two-loop matching factors for light quark masses and three-loop mass anomalous dimensions in the RI/SMOM schemes
Light quark masses can be determined through lattice simulations in
regularization invariant momentum-subtraction(RI/MOM) schemes. Subsequently,
matching factors, computed in continuum perturbation theory, are used in order
to convert these quark masses from a RI/MOM scheme to the MS-bar scheme. We
calculate the two-loop corrections in quantum chromodynamics(QCD) to these
matching factors as well as the three-loop mass anomalous dimensions for the
RI/SMOM and RI/SMOM_gamma_mu schemes. These two schemes are characterized by a
symmetric subtraction point. Providing the conversion factors in the two
different schemes allows for a better understanding of the systematic
uncertainties. The two-loop expansion coefficients of the matching factors for
both schemes turn out to be small compared to the traditional RI/MOM schemes.
For nf=3 quark flavors they are about 0.6-0.7% and 2%, respectively, of the
leading order result at scales of about 2 GeV. Therefore, they will allow for a
significant reduction of the systematic uncertainty of light quark mass
determinations obtained through this approach. The determination of these
matching factors requires the computation of amputated Green's functions with
the insertions of quark bilinear operators. As a by-product of our calculation
we also provide the corresponding results for the tensor operator.Comment: 24 pages, 2 figures; v2: version accepted for publication in the
journa
NNLO Computational Techniques: the Cases H -> gamma gamma and H -> g g
A large set of techniques needed to compute decay rates at the two-loop level
are derived and systematized. The main emphasis of the paper is on the two
Standard Model decays H -> gamma gamma and H -> g g. The techniques, however,
have a much wider range of application: they give practical examples of general
rules for two-loop renormalization; they introduce simple recipes for handling
internal unstable particles in two-loop processes; they illustrate simple
procedures for the extraction of collinear logarithms from the amplitude. The
latter is particularly relevant to show cancellations, e.g. cancellation of
collinear divergencies. Furthermore, the paper deals with the proper treatment
of non-enhanced two-loop QCD and electroweak contributions to different
physical (pseudo-)observables, showing how they can be transformed in a way
that allows for a stable numerical integration. Numerical results for the
two-loop percentage corrections to H -> gamma gamma, g g are presented and
discussed. When applied to the process pp -> gg + X -> H + X, the results show
that the electroweak scaling factor for the cross section is between -4 % and +
6 % in the range 100 GeV < Mh < 500 GeV, without incongruent large effects
around the physical electroweak thresholds, thereby showing that only a
complete implementation of the computational scheme keeps two-loop corrections
under control.Comment: LaTeX, 70 pages, 8 eps figure
Multi-wavelength properties of IGR J05007-7047 (LXP 38.55) and identification as a Be X-ray binary pulsar in the LMC
We report on the results of a 40 d multi-wavelength monitoring of the
Be X-ray binary system IGR J05007-7047 (LXP 38.55). During that period the
system was monitored in the X-rays using the Swift telescope and in the optical
with multiple instruments. When the X-ray luminosity exceeded erg/s
we triggered an XMM-Newton ToO observation. Timing analysis of the photon
events collected during the XMM-Newton observation reveals coherent X-ray
pulsations with a period of 38.551(3) s (1 {\sigma}), making it the 17
known high-mass X-ray binary pulsar in the LMC. During the outburst, the X-ray
spectrum is fitted best with a model composed of an absorbed power law () plus a high-temperature black-body (kT 2 keV) component. By
analysing 12 yr of available OGLE optical data we derived a 30.776(5) d
optical period, confirming the previously reported X-ray period of the system
as its orbital period. During our X-ray monitoring the system showed limited
optical variability while its IR flux varied in phase with the X-ray
luminosity, which implies the presence of a disk-like component adding cooler
light to the spectral energy distribution of the system.Comment: 11 pages, 11 figures, Accepted for publication in MNRA
Evoking ‘New Zealandness’: Representations of nationalism during the 2011 (New Zealand) Rugby World Cup
The staging, promotion and commodification of the 2011 Rugby World Cup as a global, mega-event simultaneously provided intriguing evocations of the nation and forms of national identity within New Zealand media and press coverage. Our article will examine the ‘ancillary’ mediated representations, branding and events surrounding the tournament to explore the blurred articulations of, and relationships between, nationalism and the broader global forces at play
Self-recording portable soil penetrometer
A lightweight portable penetrometer for testing soil characteristics is described. The penetrometer is composed of a handle, data recording, and probe components detachably joined together. The data recording component has an easily removed recording drum which rotates according to the downward force applied on the handle, and a stylus means for marking the drum along its height according to the penetration depth of probe into the soil
Pressure test analysis of 200-inch multicell test tank
Pressure test analysis for large multiple cell tank with sectioned ski
Swift J053041.9-665426, a new Be/X-ray binary pulsar in the Large Magellanic Cloud
We observed the newly discovered X-ray source Swift J053041.9-665426 in the
X-ray and optical regime to confirm its proposed nature as a high mass X-ray
binary. We obtained XMM-Newton and Swift X-ray data, along with optical
observations with the ESO Faint Object Spectrograph, to investigate the
spectral and temporal characteristics of Swift J053041.9-665426. The XMM-Newton
data show coherent X-ray pulsations with a period of 28.77521(10) s (1 sigma).
The X-ray spectrum can be modelled by an absorbed power law with photon index
within the range 0.76 to 0.87. The addition of a black body component increases
the quality of the fit but also leads to strong dependences of the photon
index, black-body temperature and absorption column density. We identified the
only optical counterpart within the error circle of XMM-Newton at an angular
distance of ~0.8 arcsec, which is 2MASS J05304215-6654303. We performed optical
spectroscopy from which we classify the companion as a B0-1.5Ve star. The X-ray
pulsations and long-term variability, as well as the properties of the optical
counterpart, confirm that Swift J053041.9-665426 is a new Be/X-ray binary
pulsar in the Large Magellanic Cloud.Comment: 10 pages, 8 figures, accepted for publication in A&
Constant-temperature molecular-dynamics algorithms for mixed hard-core/continuous potentials
We present a set of second-order, time-reversible algorithms for the
isothermal (NVT) molecular-dynamics (MD) simulation of systems with mixed
hard-core/continuous potentials. The methods are generated by combining
real-time Nose' thermostats with our previously developed Collision Verlet
algorithm [Mol. Phys. 98, 309 (1999)] for constant energy MD simulation of such
systems. In all we present 5 methods, one based on the Nose'-Hoover [Phys. Rev.
A 31, 1695 (1985)] equations of motion and four based on the Nose'-Poincare'
[J.Comp.Phys., 151 114 (1999)] real-time formulation of Nose' dynamics. The
methods are tested using a system of hard spheres with attractive tails and all
correctly reproduce a canonical distribution of instantaneous temperature. The
Nose'-Hoover based method and two of the Nose'-Poincare' methods are shown to
have good energy conservation in long simulations.Comment: 9 pages, 5 figure
- …
