4,610 research outputs found

    Self-recording portable soil penetrometer

    Get PDF
    A lightweight portable penetrometer for testing soil characteristics is described. The penetrometer is composed of a handle, data recording, and probe components detachably joined together. The data recording component has an easily removed recording drum which rotates according to the downward force applied on the handle, and a stylus means for marking the drum along its height according to the penetration depth of probe into the soil

    Winter Home Range and Habitat Use of the Virginia Northern Flying Squirrel (Glaucomys sabrinus fuscus)

    Get PDF
    We radio-tracked two male and one female Virginia northern flying squirrels (Glaucomys sabrinus fuscus) in the Allegheny Mountains of West Virginia at Snowshoe Mountain Resort, in winter 2003 and Canaan Valley National Wildlife Refuge in winter 2004, respectively, to document winter home range and habitat use in or near ski areas. Male home range size in the winter was larger than that reported for males during summer and fall, whereas the female home range we observed was smaller than those reported for summer and fall. However, winter habitat use was similar to summer and fall habitat use reported in other studies. Virginia northern flying squirrels foraged and denned in both red spruce (Picea rubens)-dominated forests and northern hardwood forests; however, selection of red spruce-dominated forests and open areas was greater than expected based on availability. Use of northern hardwood forest occurred less than expected based on availability. Male squirrels denned near, and routinely crossed, downhill ski slopes and unimproved roads during foraging bouts, whereas the female approached, but did not cross forest edges onto roads or trails

    Half-Megasecond Chandra Spectral Imaging of the Hot Circumgalactic Nebula around Quasar Mrk 231

    Full text link
    A deep 400-ksec ACIS-S observation of the nearest quasar known, Mrk 231, is combined with archival 120-ksec data obtained with the same instrument and setup to carry out the first ever spatially resolved spectral analysis of a hot X-ray emitting circumgalactic nebula around a quasar. The 65 x 50 kpc X-ray nebula shares no resemblance with the tidal debris seen at optical wavelengths. One notable exception is the small tidal arc 3.5 kpc south of the nucleus where excess soft X-ray continuum emission and Si XIII 1.8 keV line emission are detected, consistent with star formation and its associated alpha-element enhancement, respectively. An X-ray shadow is also detected at the location of the 15-kpc northern tidal tail. The hard X-ray continuum emission within 6 kpc of the center is consistent with being due entirely to the bright central AGN. The soft X-ray spectrum of the outer (>6 kpc) portion of the nebula is best described as the sum of two thermal components with T~3 and ~8 million K and spatially uniform super-solar alpha element abundances, relative to iron. This result implies enhanced star formation activity over ~10^8 yrs accompanied with redistribution of the metals on large scale. The low-temperature thermal component is not present within 6 kpc of the nucleus, suggesting extra heating in this region from the circumnuclear starburst, the central quasar, or the wide-angle quasar-driven outflow identified from optical IFU spectroscopy on a scale of >3 kpc. Significant azimuthal variations in the soft X-ray intensity are detected in the inner region where the outflow is present. The soft X-ray emission is weaker in the western quadrant, coincident with a deficit of Halpha and some of the largest columns of neutral gas outflowing from the nucleus. Shocks created by the interaction of the wind with the ambient ISM may heat the gas to high temperatures at this location. (abridged)Comment: 43 pages, 11 figures, accepted for publication in the Astrophysical Journa

    Nanometer-scale Tomographic Reconstruction of 3D Electrostatic Potentials in GaAs/AlGaAs Core-Shell Nanowires

    Full text link
    We report on the development of Electron Holographic Tomography towards a versatile potential measurement technique, overcoming several limitations, such as a limited tilt range, previously hampering a reproducible and accurate electrostatic potential reconstruction in three dimensions. Most notably, tomographic reconstruction is performed on optimally sampled polar grids taking into account symmetry and other spatial constraints of the nanostructure. Furthermore, holographic tilt series acquisition and alignment have been automated and adapted to three dimensions. We demonstrate 6 nm spatial and 0.2 V signal resolution by reconstructing various, previously hidden, potential details of a GaAs/AlGaAs core-shell nanowire. The improved tomographic reconstruction opens pathways towards the detection of minute potentials in nanostructures and an increase in speed and accuracy in related techniques such as X-ray tomography

    A new super-soft X-ray source in the Small Magellanic Cloud: Discovery of the first Be/white dwarf system in the SMC?

    Full text link
    The Small Magellanic Cloud (SMC) hosts a large number of Be/X-ray binaries, however no Be/white dwarf system is known so far, although population synthesis calculations predict that they might be more frequent than Be/neutron star systems. XMMUJ010147.5-715550 was found as a new faint super-soft X-ray source (SSS) with a likely Be star optical counterpart. We investigate the nature of this system and search for further high-absorbed candidates in the SMC. We analysed the XMM-Newton X-ray spectrum and light curve, optical photometry, and the I-band OGLE III light curve. The X-ray spectrum is well represented by black-body and white dwarf atmosphere models with highly model-dependent temperature between 20 and 100 eV. The likely optical counterpart AzV 281 showed low near infrared emission during X-ray activity, followed by a brightening in the I-band afterwards. We find further candidates for high-absorbed SSSs with a blue star as counterpart. We discuss XMMUJ010147.5-715550 as the first candidate for a Be/white dwarf binary system in the SMC.Comment: 6 pages, 4 figures, accepted by A&

    Quasar Feedback in the Ultraluminous Infrared Galaxy F11119+3257: Connecting the Accretion Disk Wind with the Large-Scale Molecular Outflow

    Full text link
    In Tombesi et al. (2015), we reported the first direct evidence for a quasar accretion disk wind driving a massive molecular outflow. The target was F11119+3257, an ultraluminous infrared galaxy (ULIRG) with unambiguous type-1 quasar optical broad emission lines. The energetics of the accretion disk wind and molecular outflow were found to be consistent with the predictions of quasar feedback models where the molecular outflow is driven by a hot energy-conserving bubble inflated by the inner quasar accretion disk wind. However, this conclusion was uncertain because the energetics were estimated from the optically thick OH 119 um transition profile observed with Herschel. Here, we independently confirm the presence of the molecular outflow in F11119+3257, based on the detection of broad wings in the CO(1-0) profile derived from ALMA observations. The broad CO(1-0) line emission appears to be spatially extended on a scale of at least ~7 kpc from the center. Mass outflow rate, momentum flux, and mechanical power of (80-200) R_7^{-1} M_sun/yr, (1.5-3.0) R_7^{-1} L_AGN/c, and (0.15-0.40)% R_7^{-1} L_AGN are inferred from these data, assuming a CO-to-H_2 conversion factor appropriate for a ULIRG (R_7 is the radius of the outflow normalized to 7 kpc and L_AGN is the AGN luminosity). These rates are time-averaged over a flow time scale of 7x10^6 yrs. They are similar to the OH-based rates time-averaged over a flow time scale of 4x10^5 yrs, but about a factor 4 smaller than the local ("instantaneous"; <10^5 yrs) OH-based estimates cited in Tombesi et al. The implications of these new results are discussed in the context of time-variable quasar-mode feedback and galaxy evolution. The need for an energy-conserving bubble to explain the molecular outflow is also re-examined.Comment: 15 pages, 6 figures, 4 tables, accepted for publication in Ap

    Close Encounters of the European Kind: Structural Reforms, Economic Integration and Sectoral Heterogeneity

    Get PDF
    This paper addresses two main questions: (a) Has European integration hindered the implementation of labour, financial and product market structural reforms? (b) Do the effects of these reforms vary more across sectors than across countries? Using more granular reform measures, longer time windows and a larger sample of countries than previous studies, we confirm that the euro triggered product but neither labour nor financial market reforms. Differently from previous studies, we find that: (a) the Single Market has similar effects to the euro, and (b) sectoral heterogeneity appears less important in explaining the economic impacts of reforms than country heterogeneity

    Counterrotating Nuclear Disks in Arp 220

    Get PDF
    The ultraluminous infrared galaxy Arp 220 has been observed at 0.5" resolution in CO(2-1) and 1 mm continuum using the newly expanded Owens Valley Millimeter Array. The CO and continuum peaks at the double nuclei and the surrounding molecular gas disk are clearly resolved. We find steep velocity gradients across each nucleus (dV ~ 500 km/s within r= 0.3") whose directions are not aligned with each other and with that of the outer gas disk. We conclude that the double nuclei have their own gas disks (r ~ 100 pc). They are counterrotating with respect to each other and embedded in the outer gas disk (r ~ 1 kpc) rotating around the dynamical center of the system. The masses of each nucleus are M_dyn > 2* 10^9 M_sun based on the CO kinematics. Although there is no evidence of an old stellar population in the optical or near infrared spectroscopy of the nuclei (probably due to the much brighter young population), it seems likely that these nuclei were 'seeded' from the pre-merger nuclei in view of their counterrotating gas kinematics. The gas disks probably constitute a significant fraction (~ 50 %) of the mass in each nucleus. The CO and continuum brightness temperatures imply that the nuclear gas disks have high area filling factors (~ 0.5-1) and have extremely high visual extinctions (Av ~ 1000 mag). The molecular gas must be hot (>= 40 K) and dense (>= 10^4-5 cm^-3), given the large mass and small scale-height of the nuclear disks. The continuum data suggest that the large luminosity (be it starburst or AGN) must originate within 100 pc of the two nuclear gas disks which were presumably formed through concentration of gas from the progenitor outer galaxy disks.Comment: 20 pages, 5 figures. Accepted for publication in The Astrophysical Journa

    From ethnographic research to big data analytics - A case of maritime energy-efficiency optimization

    Get PDF
    The shipping industry constantly strives to achieve efficient use of energy during sea voyages. Previous research that can take advantages of both ethnographic studies and big data analytics to understand factors contributing to fuel consumption and seek solutions to support decision making is rather scarce. This paper first employed ethnographic research regarding the use of a commercially available fuel-monitoring system. This was to contextualize the real challenges on ships and informed the need of taking a big data approach to achieve energy efficiency (EE). Then this study constructed two machine-learning models based on the recorded voyage data of five different ferries over a one-year period. The evaluation showed that the models generalize well on different training data sets and model outputs indicated a potential for better performance than the existing commercial EE system. How this predictive-analytical approach could potentially impact the design of decision support navigational systems and management practices was also discussed. It is hoped that this interdisciplinary research could provide some enlightenment for a richer methodological framework in future maritime energy researc

    NICMOS Imaging of the Nuclei of Arp 220

    Full text link
    We report high resolution imaging of the ultraluminous infrared galaxy Arp 220 at 1.1, 1.6, and 2.22 microns with NICMOS on the HST. The diffraction-limited images at 0.1--0.2 arcsecond resolution clearly resolve both nuclei of the merging galaxy system and reveal for the first time a number of luminous star clusters in the circumnuclear envelope. The morphologies of both nuclei are strongly affected by dust obscuration, even at 2.2 microns : the primary nucleus (west) presents a crescent shape, concave to the south and the secondary (eastern) nucleus is bifurcated by a dust lane with the southern component being very reddened. In the western nucleus, the morphology of the 2.2 micron emission is most likely the result of obscuration by an opaque disk embedded within the nuclear star cluster. The morphology of the central starburst-cluster in the western nucleus is consistent with either a circumnuclear ring of star formation or a spherical cluster with the bottom half obscured by the embedded dust disk. Comparison of cm-wave radio continuum maps with the near-infrared images suggests that the radio nuclei lie in the dust disk on the west and near the highly reddened southern component of the eastern complex. The radio nuclei are separated by 0.98 arcseconds (corresponding to 364 pc at 77 Mpc) and the half-widths of the infrared nuclei are approximately 0.2-0.5 arcseconds. At least 8, unresolved infrared sources -- probably globular clusters -- are also seen in the circumnuclear envelope at radii 2-7 arcseconds . Their near-infrared colors do not significantly constrain their ages.Comment: LaTex, 15 pages with 1 gif figure and 5 postscript figures. ApJL accepte
    corecore