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Abstract: The shipping industry constantly strives to achieve efficient use of energy during sea
voyages. Previous research that can take advantages of both ethnographic studies and big data
analytics to understand factors contributing to fuel consumption and seek solutions to support
decision making is rather scarce. This paper first employed ethnographic research regarding the use
of a commercially available fuel-monitoring system. This was to contextualize the real challenges on
ships and informed the need of taking a big data approach to achieve energy efficiency (EE). Then this
study constructed two machine-learning models based on the recorded voyage data of five different
ferries over a one-year period. The evaluation showed that the models generalize well on different
training data sets and model outputs indicated a potential for better performance than the existing
commercial EE system. How this predictive-analytical approach could potentially impact the design
of decision support navigational systems and management practices was also discussed. It is hoped
that this interdisciplinary research could provide some enlightenment for a richer methodological
framework in future maritime energy research.

Keywords: ethnography; thick data; big data; machine learning; maritime energy efficiency; interface
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1. Introduction

As a critical transportation sector which accounts for estimated 80% of the volume of world
trade [1], the shipping industry has been striving to reduce the environmental footprint in recognition
of climate change challenges. In April 2018, International Maritime Organization (IMO) adopted an
Initial IMO Strategy on reduction of Greenhouse Gas (GHG) from ships, aiming that we should reduce
the total annual GHG emissions by at least 50% by 2050 compared to 2008 and further strengthen
the energy-efficiency (EE) design requirements for ships [2]. EE in shipping is defined as energy
used per transported goods and distance, e.g., kg of fuel per tonne cargo and nautical mile [3]. It is
a multi-facetted issue and the ability of a vessel to decrease GHG emissions is a coordinated effort
between speed control, navigational decisions, engine maintenance, hull resistance, propeller efficiency,
scrubber systems etc. However, for the purposes of this paper, it is simplified as describing this as a
sub-system which is directed at examining how speed governance can be regulated and predicted
using machine-learning techniques. The intensification of EE, i.e., decreased fuel consumption while
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maintaining at least the same level of transportation services, is considered as a significant contributor
as it could lead to reductions of 25% to 75% of CO2 emission, according to an IMO GHG study [4].
In addition to the environmental concerns, decreases in fuel consumption are also important to the
economic sustainability of shipping companies [5].

There are multiple factors that could impact EE revealed by previous maritime research, such
as optimizing weather routing (e.g., reducing resistance considering the wind, waves and current),
minimizing rudder usage with adaptive autopilot settings, optimizing quantity of ballast water carried
and optimizing trim and draft for lowest hull resistance [6,7]. Some research suggests that the most
significant saving comes from voyage speed optimization—by lowering the speed by 10% the vessel
can save approximately 20% in propulsion fuel consumption [6].

It has also been observed that the ship’s crew usually have a direct and considerable impact on
EE through their operational practices [3,8,9]. For example, as punctuality is critical for ferry vessels,
the crew need to find the proper balance between fuel consumption at lower speeds and the direct
and indirect costs of delayed port arrival [3]. However, insufficient knowledge and awareness of the
practitioners and management are commonly identified to be one of the most critical gaps in making
energy-saving decisions [5,7,10–13]. The challenges in the maritime energy field are characterized by
elements such as compromised quality and low level of awareness of information [13,14], inadequate
data analysis and actionabilities of improved operational measures [15], under-developed management
standards [16], information asymmetries and power structures within organizations [17]. In the
maritime organizational context these gaps are usually multiplied as the today’s shipping industry
essentially operates under a top-down management system [11] in which the practitioners’ voices were
not typically considered in ship–shore communications [18]. All these considerations constitute the
complexity in the EE domain. But what methodological tools do researchers possess to understand the
complexity existing within the domain?

The application of ethnographic research can contribute to a better understanding of EE practices,
however, these approaches have been largely ignored within a technology-driven industry. In the
maritime EE domain, an important advantage for taking such an epistemological approach is to
move researchers closer to the tacit knowledge, norms, understandings and assumptions that are
considered by the ship’s crew during their work and are influential in forming the basis for decisions
and practices that support systems design [19]. The importance of applied ethnography is frequently
underestimated within a sociotechnical perspective. One example is that speed is usually considered
as an important factor for EE which is relevant to decreased time to port. However, with in-depth
interviews, it was revealed that ship–shore–port communication, time constraints for ship operators,
means for predicting energy use, consequences of the breach of the rules of punctuality, as examples, all
play a role in this complex sociotechnical system [3]. Sampson and Poulsen’s recent study showed that
cargo-owners’ decisions can increase emissions because the speed choice for tankers can be strongly
limited by cargo-owner’s commercial considerations [20]. Many other studies have also shown that EE
operation of the vessels can become irregular and complex as the picture is influenced by multiple
actors and their relationships. There could be involvement of multiple stakeholders [21], goal or
demand conflicts with EE operations (thus limiting the “maneuverability” for officers on board) [22],
gaps in inter-department collaborations [23,24], social barriers in communities of practice [12,25], lack
of trust between ship and shore organizations (thus downgrading the organizational practice) [26],
etc. These insights in the EE domain can be captured by ethnographic research or its associated “thick
data” approaches [27] (i.e., “a sticky stuff that is difficult to quantify” but “offers incredible depth of
meanings and stories” [28]). It is important perceive and understand these ethnographic inquiries
within the context of sociotechnical systems, so that we may make sense of the needs, requirements
and even obtain inspirations for system design.

Unfortunately, such ethnographic inquiries and efforts usually stop before going to the nitty-gritty
world of technical design and implementation for decision support systems, leaving the notorious
issue of “implications for design” [29] and creating a “research-practice gap” [30]. This is essentially
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making the designers and engineers of technical systems used onboard the goalkeepers, as they seem
to be the only ones that can influence the design and use of the technology at the “sharp end”. In fact
technology is but one essential part of the sociotechnical system [31] and it is vital that the design
of the technological artefacts should consider these ethnographic inquiries. While EE performance
monitoring, evaluation, prediction and decision support for improved operational and management
practices is becoming increasingly important, it is also necessary to realize that this process of data
collection and analysis is becoming increasingly difficult due to lack of appropriate energy consumption
monitoring means and practices [9,15]. In the past several decades, many technology-centered solutions
have thus been introduced to the maritime domain for better data analysis and management practices.
In particular, some state-of-the-art machine-learning based approaches [32–36] were proposed to take
advantage of big data in the energy field to improve EE and provide better decision support. The
pace of this introduction is even accelerating in the wave of digitalization and full automation [37].
The increasing volume and diversity of ship energy consumption-related data are challenging the
shipping industry to face a new landscape [38], entering a new era where data becomes the new oil
and big data analytics becomes the means to generate novel services that can allow better performance
evaluation, prediction and decision-making support [39–41]. There are some practical issues that
ethnographic research cannot deliver alone without diving into the sea of big data analytics [35], which
is an increasingly popular and important tool for tackling complexity in shipping.

However, this does not mean that big data analytics is the panacea. Understanding the EE practices
and barriers in shipping is crucial [42] and it requires the work of ethnography or ethnomethodology
that are essentially concerned about learning “tacit knowledge” and everyday social practice in the
field [43]. There is a complementary relationship between ethnography and big data [44]. Unfortunately,
almost all these state-of-the-art big data models were developed as a result of “decontextualization”
by adhering to the physical law—they never (or never tried) associated with the disciplines of
ethnography or ethnomethodology. For instance, it is extremely rare to see an interdisciplinary work
in the maritime EE domain which machine-learning engineers cite ethnographic research work that
allows big data analytics to be inspired by the thick data. Typical machine learning-oriented studies in
the EE domain [32,33] did not really ground their ideas and feature selection in the model’s training
phase on the insights produced by ethnographic research. This approach may raise serious issues
that implemented technical solutions would never become truly useful [45] as the users’ real needs,
experienced pains and use-of-context were “decontextualized” in the first place.

The review of literature above suggests that research that takes an interdisciplinary approach
to understand operational EE gaps, as well as inform the design of a navigational decision support
system, is rather scarce. Would it be possible to have an interdisciplinary research practice that uses
ethnographic research to inform big data analytics (or at least inspire the need) and decision support
system design in the field of maritime energy efficiency? Could we have a research practice that covers
a holistic process of design, from the exploration in the field to technical implementation in the lab?
What could be the value of a pluralistic epistemology embedded in an interdisciplinary research? This
paper strives to provide insight into these questions by taking an exploratory approach to examine a
case regarding maritime energy-efficiency optimization.

The purpose of this paper is to provide a paradigm to understand how applied ethnographic
research could inform big data analytics (or at least the need) for designing a better decision support
system in maritime energy context. It also aims to shape a promising space for future maritime energy
research with a richer methodological framework. The following section describes the overarching
methodological framework that is referenced to base the authors’ choices of methods at different stages
and chart the exploratory path in a specific maritime EE context.

2. Methods

To better conduct this interdisciplinary research, the authors of the papers comprise ethnographic
researchers with essential knowledge in machine learning and technical engineers with deep insights
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in ethnographic studies and maritime operations, who have been working together in a collaborative
manner since the start of the research project. The well-known “Double Diamond” design process
and innovation framework, which was adapted from the divergence-convergence model proposed in
1996 by Banathy [46] and later popularized by the British Design Council starting in 2004 [47], was
employed to guide this interdisciplinary study, undertaking an ethnographic study on ferry vessels
and applying big data analytics for EE optimization (see Figure 1).

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 26 

To better conduct this interdisciplinary research, the authors of the papers comprise 
ethnographic researchers with essential knowledge in machine learning and technical engineers 
with deep insights in ethnographic studies and maritime operations, who have been working 
together in a collaborative manner since the start of the research project. The well-known “Double 
Diamond” design process and innovation framework, which was adapted from the 
divergence-convergence model proposed in 1996 by Banathy [46] and later popularized by the 
British Design Council starting in 2004 [47], was employed to guide this interdisciplinary study, 
undertaking an ethnographic study on ferry vessels and applying big data analytics for EE 
optimization (see Figure 1). 

 
Figure 1. The overarching methodological framework adapted from the British Design Council [47]. 

An ethnographic study regarding the actual use of an advanced technological artefact used on 
ferry vessels (a commercial EE monitoring system) is positioned in the first diamond to understand 
a real problem onboard ship. This problem was co-investigated with Viktorelius who studied the 
same ferry vessels [8,12]. Ethnographic research is deemed as a qualitative method to understand 
human behaviors in their everyday practices [48]. Essential ethnographic methods include 
participatory observations and interviews, trying to discover the meanings behind the actors’ 
behaviors and beliefs [49]. Although this form of qualitative research may generate small data sets 
in quantity, the data is “thick” and delivers in-depth insights about the observed patterns and 
phenomenon [28,44]. Because doing ethnographic research means that the researchers need to be 
immersed in the fieldwork and see the things through the lenses of the field workers [43], it enables 
the research team to discover insights into the problem onboard and define areas to focus on, e.g., 
make sense of what is happening, how the crew members are using the technology or alter the way 
it is used, what detailed problems emerge in the whole interaction process, what is the underlying 
tacit knowledge or the taken-for-granted realities of everyday working life in navigation and 
energy saving, whether there is a need or opportunities for big data analytics onboard ships in the 
area of EE and if so, how the ethnographic study can inform the use of big data analytics to 
optimize EE operations and decision support system design. The answers to these questions will 
have a significant impact in consideration of the second diamond, even potentially the 
methodological choices. From this perspective, this holistic research paradigm in this paper is 
rather exploratory. 

Big data analytics were initially situated in the second diamond as a potentially useful method 
to cope with the specific problem that were identified and defined in the first diamond. The 
research team needs to review the ethnographic study’s findings and request relevant data from the 
shipping company in order to develop corresponding machine learning-based solutions that may 
have the potential to address the observed issue (or at least make an improvement of the current 
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An ethnographic study regarding the actual use of an advanced technological artefact used on ferry
vessels (a commercial EE monitoring system) is positioned in the first diamond to understand a real
problem onboard ship. This problem was co-investigated with Viktorelius who studied the same ferry
vessels [8,12]. Ethnographic research is deemed as a qualitative method to understand human behaviors
in their everyday practices [48]. Essential ethnographic methods include participatory observations
and interviews, trying to discover the meanings behind the actors’ behaviors and beliefs [49]. Although
this form of qualitative research may generate small data sets in quantity, the data is “thick” and
delivers in-depth insights about the observed patterns and phenomenon [28,44]. Because doing
ethnographic research means that the researchers need to be immersed in the fieldwork and see the
things through the lenses of the field workers [43], it enables the research team to discover insights into
the problem onboard and define areas to focus on, e.g., make sense of what is happening, how the crew
members are using the technology or alter the way it is used, what detailed problems emerge in the
whole interaction process, what is the underlying tacit knowledge or the taken-for-granted realities of
everyday working life in navigation and energy saving, whether there is a need or opportunities for big
data analytics onboard ships in the area of EE and if so, how the ethnographic study can inform the use
of big data analytics to optimize EE operations and decision support system design. The answers to
these questions will have a significant impact in consideration of the second diamond, even potentially
the methodological choices. From this perspective, this holistic research paradigm in this paper is
rather exploratory.

Big data analytics were initially situated in the second diamond as a potentially useful method to
cope with the specific problem that were identified and defined in the first diamond. The research
team needs to review the ethnographic study’s findings and request relevant data from the shipping
company in order to develop corresponding machine learning-based solutions that may have the
potential to address the observed issue (or at least make an improvement of the current situation).
The findings of the experiments will also be delivered to the shipping company as the basis for future
research and development.
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3. An Ethnographic Study on Ferry Vessels

To explore the practical energy-saving issues in the use of advanced technologies, the authors
of this paper planned an ethnographic study and visited the ferry ships owned by a collaborating
ferry company. The company introduced a commercial fuel consumption monitoring system called
ETA-pilot to assist the navigators to regulate the speed automatically, as speed is directly related to
fuel consumption. Voyages had been divided into multiple legs with fixed positions (waypoints). The
ETA-pilot proposed an optimal speed setting for each leg of the journey, based on multiple factors
(e.g., ship trim/draft, depth of the water, weather information, distance to the destination and estimated
time of arrival, etc.). The speed can also be adjusted by the navigators as course and speed deviations
may be required to follow collision avoidance regulations. The fuel consumption (per nautical mile) is
displayed as a dynamic curve along with other output parameters in a complex line chart at the bottom
of the user interface, while the total consumption is displayed on the top right corner (see Figure 2).
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Figure 2. The true speed (17 knots/h), the fuel burning rate (123 kg/nautical mile), as well as total fuel
consumption (10,696 kg) were displayed on the user interface of the ETA-pilot.

In ethnographic study fieldwork, all research team members were learning to become functioning
members of the practitioners’ community of practice through introspection and intersubjective inquiry
in order to better “percolate” the tacit knowledge to the surface [43]. The authors actively observed
how the deck and engineering officers worked in situ, documented the context of use and their
purpose of use in their everyday work and interviewed them to understand their perceptions of
how this seemingly advanced technology influenced their knowledge and awareness in saving fuel.
Documentation from observations, interviews and other sources of information were sought and used
because no single source of information could be trusted to provide a comprehensive perspective on
the whole user experience [43]. Using a combination of these data collection approaches enabled the
research team to validate and crosscheck findings.

What was observed as a significant finding was that the bridge crew frequently disabled the
ETA-pilot and manually set the speed and course based on their tacit knowledge around the condition
of weather and dynamic traffic situation, claiming that they could improve upon fuel consumption.
It was observed that they were frequently monitoring speed, course and wind situation. A higher
speed is usually preferred as the commercial risk of a delay is very high, considering the requirements
on punctuality, but they were also aware that a higher speed could lead to more fuel consumption,
especially in shallow water and head wind. The crew did not base their decision on whether to
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deactivate the ETA-pilot or which speed to set on formulas, but instead, they relied heavily on
traditional navigational instruments and their own navigational experience to maneuver the ship.
Much of the voyage and post-voyage information provided by the ETA-pilot was not observed being
used by the crew members. On one occasion the captain was actively introducing the features of the
ETA-pilot to the research team, but because he realized he had received some wrong information about
the weather (which was required to be put into the machine for it to function properly), he had to turn
off the ETA-pilot completely before departure.

That enthusiasm of using the tool was not common amongst the crew members. Instead many
of them pointed out that the underuse of the toolbox was subject to a lack of trust and usable
information—it was difficult to know if the tool was indeed helpful for reducing the fuel consumption
or not as there was no benchmarks for comparison, let alone decision support. A fancy line chart
was plotted on the display but almost no seafarers used and reviewed it during or after a journey.
A tool may be functionally powerful but if it does not address the true needs or failed to be integrated
into the work practice, it will be risking becoming an ornamental bauble. During the voyage, the
ETA-pilot basically only presented two easily readable information sources that the navigators could
instantly monitor without much cognitive effort: the consumption rate and total fuel consumption.
But according to the navigators, such information can hardly be used for real-time self-evaluation and
navigational decision support in an eco-driving manner, which was explicitly mentioned multiple
times during the interviews as their “wish-list”. The tool did not really provide the users a learning
space for knowledge and awareness improvement. Several navigators commented that if the ETA-pilot
could see some sort of fuel consumption prediction they might be able to be more proactive instead
of being reactive in navigation choices. In addition, there could be many traffic situations in which
the master mariner felt it was necessary to increase the maneuverability by increasing the speed,
which could lead to more fuel consumption. Under these circumstances, they did not really mind the
consequence of burning more fuel. To them safety always overrides EE goal. There appeared to be no
incentives or information feedback to allow them to make more deliberate efforts to save fuel within
their safety boundaries. All these technical configurations and dynamic situations revealed parts of
their context of use. The use of the ETA-pilot was opportunistic at best. From the design and use of the
tool’s perspective, a prominent issue began to surface: the operational choice for navigational strategies
have a considerable impact on fuel consumption [8,13], but there is an absence of efficient monitoring
in a real voyage environment because the navigators did not get sufficient analytical support from the
existing EE monitoring tool.

This gap was not bound to the ship side. According to the supplier of the ETA-pilot system, the
recorded real-time data on fuel consumption and weather condition were transferred to the shore-side
for possible further analysis and hopefully EE optimization suggestions could be delivered back to the
ship. However, the crew members expressed that they never received such feedback from the supplier
except the overarching requirement to save fuel or taking the training course of the ETA-pilot on how
to undertake eco-driving with its “decision support functionalities”. Once the vessel had reached her
destination, that was the end of the role for this technology. Both the real-time decision support system
and evaluating activities were missing. This phenomenon was also noted by Viktorelius who was
involved in the ethnographic studies on the same vessels too, concluding that this was a problem of
“underdevelopment of evaluating activities” or “inadequate knowledge” [12].

One of the authors of this paper also had a chance to interview the designer of the ETA-pilot. The
designer explained that that there was no universal optimal use of this decision support tool but this
depended upon the navigator’s own experience and interpretation, as there are many factors that the
current algorithm of the tool cannot universally account for, e.g., different routes, different efficiency
from different propellers, different potentials to save fuel on different ships; the tool was not developed
in a way that it can dynamically “learn” from the historical data and provide real-time decision support
for eco-driving (although it does have some predictive capability such as adjusting speed based on
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depth of the water and manually input weather information etc.). The designer admitted that such
needs may be considered in its future development.

Overall, the lack of performance evaluation and decision support has contributed to the unexpected
EE practice (advanced technologies being not used most of the time) and potential issues in reducing
fuel consumption, whereas the shipping company/developer of the tool seemed to lack the competence
or resources to analyze the large amount of data that was generated during voyages. The ethnographic
study did not only help to identify some particular parameters of concern (speed, course, wind, fuel
consumption), but also identified some actual gaps in the use of a “black-box” technology and needs
of the users in their actual daily work for improved EE performance.

The most important insight is perhaps the associations made from the “first diamond” to the
“second diamond” informed by the findings of the ethnographic studies. The idea and need of
using big data analytics for better decision support for EE optimization in this context was much
appreciated. It may introduce some changes that is important for the system improvement. The
findings discovered that (at least) the current design and implementation of the tool had an intrinsic
lack of capacity to enable improved operational practice regarding EE. This actual deficiency of the
EE monitoring tool, although was merely a part of the sociotechnical factors, matched the strengths
and advantages of artificial intelligence (AI) technologies and machine-learning techniques well. For
example, the technologies will have the computational power to analyze data and support the learning
and understanding of actual fuel consumption without adding extra operational workload upon ship
personnel. Furthermore, the ethnographic research suggested some strategic direction that was worth
further investigation, e.g., how to use historical ship sensor data to predict fuel consumption in a
similar condition and provide easily understandable information to support decisions so that it may be
possible for the ship operators to understand which factors are influencing the prediction, to what
extent and how to adapt operational practice in situ. Additionally, the ethnographic research also
elucidated some features that likely play significant roles in machine-learning modelling, such as
speed, course, locations, wind, fuel consumption. Some studies used physics-based model simulations
to estimate ship performance [50] and they usually did not integrate weather information into the
modelling which will likely influence the prediction capability when used in a real voyage environment.

The purpose of the remainder of the paper is not to shift to the big data analytics to engineer a
fully-fledged technological product as such, but to demonstrate a proof of concept that is inspired and
initially informed by the ethnographic research, in order to complete this interdisciplinary approach,
because the ethnographic research sets the departure point of the research on big data analytics and
the follow-up discussion.

4. Applying Big Data Analytics for Maritime Energy Efficiency

The research activities in the second diamond were to use machine learning to predict fuel
consumption given an operational and environment profile. In order to do so, it is necessary to acquire
enough data from various sources. The research team requested and obtained voyage data recorded
over a one-year period from five different European-based merchant ferries that are available to carry
passengers, cars and trucks. In this section of the paper, we will walk into the technical world and
propose to construct two models of the propulsion systems of the ships by using supervised and
unsupervised machine-learning techniques and evaluated their performance in terms of data prediction
accuracy and generalization capabilities. It is followed by a discussion around the potential impact of
these predictive-analytical approaches on the interface design and management practices optimization.

4.1. Data Sources and Preprocessing

Sensors collect data continuously on the ships, but only store an averaged value every 10 min.
Relevant sensor data sets based on the findings of ethnographic research, e.g., speed over ground
(SOG), speed through water (STW), apparent wind speed (AWS), course over ground (COG), fuel
consumption, etc., from five different vessels (Ship 1, 2, 3, 4, 5) of the same shipping company and
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automatic identification system (AIS) data were also obtained. Most attention was paid to the Ship 1’s
journey between Gothenburg and Kiel, which is longest in distance among all the voyages run by these
five vessels. For vessel 1 and 5, the data covers approximately a two-year period and just a one-year
period for the remaining vessels. To clarify how the data were pre-processed, the following concepts
are provided:

1. A data point is defined as a 1-dimensional value that represents a 10-min average, starting at a
defined point in time. A complete list of data points collected by the on-board ship sensors is
provided in Table A1 in the Appendix A. Data points can also carry static values (such as ship
identifier) and may not relate to an on-board sensor.

2. A measurement is defined as all data points that belong to the same starting point in time.
3. A data row (or row) is a measurement, extended with values that can be derived from

measurements or originate from other data sources than on-board ship sensors.

Data were provided in Microsoft Excel files (1 file per ship). Columns were renamed or moved to
ensure that all files have the same set and order of columns. All the string values are also converted
to numerical values. Measurements deliver a continuous stream of information; thus, it is more
practicable to divide this stream into sections (separation into journeys). A journey index was assigned
to rows of the sensor data. An assumption was that a speed greater than 8 knots marks the beginning
or continuation of a journey and a speed below 5 knots marks the end of a journey. The data from
different sources had to be integrated, assimilated and normalized and are further described in the
following sections. Figure 3 presents an overview of the data pipeline in the pre-processing stage.
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4.1.1. Data Assimilation

Weather data was acquired once for all journeys, before the machine model was trained, in order
to speed up the training process. Historical weather forecasts data were obtained from forecast.io
(An online service which aggregates multiple weather models—see forecast.io/raw) and another
data set was provided by the German Meteorological Office (DWD) (Deutscher Wetterdienstsee
https://www.dwd.de/DE/Home/home_node.html) Data points included in the sets are shown in Table 1.
Weather forecasts describe values for rectangular grid cells at defined time intervals. For the DWD data,
grid cells span 0.05◦ in south-west and 0.1◦ in east-west (equivalent to 5.57 × 5.90 km/5.57 × 6.54 km)
and are generated for 3, 6, 9, and 12 h in one model run. Model runs were performed every 12 h.
Interpolation of time and location was used to retrieve weather information from the DWD data set.

https://www.dwd.de/DE/Home/home_node.html
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Table 1. Weather data sets.

Data Point forecast.io DWD

wind speed X X
wind bearing X X

pressure X
temperature X

humidity X
signi. height waves combined X

signi. height wind waves X
mean direction wind waves X

direction swell waves X

Ships and traffic control use the broadcasted information from an automatic identification system
(AIS) to monitor other vessels’ navigational intentions. The AIS data provided by SSPA (A Swedish
company which provides maritime solutions—see https://www.sspa.se) covers information about
ships up to 60 km from the Swedish coastline. This provides information on the direction of travel for
each journey, checking whether the vessel was located in a 10 km radius of the pier of Gothenburg at
journey start time.

Unfortunately, the AIS data provided cannot be used to reliably track a vessel during a complete
voyage, it is necessary to get location approximation by using speed. All average speed (km/hour)
samples over all 10-min intervals of the current journey (starting at t0), divided by 6 results in traveled
distance relative to journey start (see Equation (1)). Taking the voyage from Gothenburg to Kiel as an
example, the position can be approximated using a linear interpolation via relative distance travelled.
The track used consists of 83 waypoints that span a total length of 437.43 km.

dist(t) =
∑t

i=t0

speed(i) ∗ 10
60

(1)

4.1.2. Removal of Glitches

Visualization of onboard sensor data showed unexplained spikes that occur in single data points.
Various reasons as malfunction of sensors, data transmission, data conversion, etc. could be the cause.
Separation of journeys as described earlier also led to journeys that are too long (span over multiple
actual journeys) or are too short (faulty speed measurement during voyage leads false detection of
end-of-journey). Glitches as observed in the sensor data represented values far of the normal range of
average data points. By counting all values of a data series, a threshold value could be determined so
that all extreme glitches can be removed without losing too many data samples segment.

Figure 4 depicts the relationship between the top x%-values dropped and the corresponding
amount of the remaining data points (i.e., the data that do not fall into the cut-off segment).

https://www.sspa.se
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As shown in Table 2, the number of cut-off data points by a threshold of 47% is fairly low and
introduces minimal loss of data.

Table 2. Amount of remaining data points per series after cut-off at 47%.

Dimension Total Removed Remaining in %

Marine Diesel Oil (MDO) Main Engine (ME) Group 1 50,958 44 99.912
Marine Diesel Oil (MDO) Main Engine (ME) Group 2 50,958 144 99.716

Apparent Wind Speed (AWS) (m/s) 50,767 35 99.993
Speed Through Water (STW) (knots) 45,419 31 99.993
Speed Over Ground (SOG) (knots) 50,785 20 99.996

4.1.3. Normalization

Normalization is always performed on the same data set that is used for model training.
Z-normalization is used in this work to ensure that all elements of the input vector are transformed
into the output vector whose mean is approximately 0 while the standard deviation is in a range close
to 1 [51]. Before normalization, data will be filtered to remove all entries where fuel consumption of all
fuel types is recorded as 0, to avoid a 0-bias in the average. In the example shown here, 26,925 data
rows were processed (from a total of 248,128). Table 3 shows exemplary three dimensions before and
after the normalization.

Table 3. Exemplary three dimensions data normalization.

Dimension Min Max Mean Std

AWS (m/s)
normalized 0.000000|−1.918170 43.038380|4.194465 13.505619|0.000000 7.040889 1.000000

COG (degrees)
normalized 0.000000|−1.490091 359.990000|1.791616 163.456975|0.000000 109.695950 1.000000

SOG (knots)
normalized 0.000000|−3.137029 21.129949|1.135663 15.513702|0.000000 4.945348 1.000000

4.2. Constructing Prediction Models

Two approaches on how machine learning is used to process the data described in Section 4.1
are considered, in order to provide a predictive-analytical foundation for future energy-efficiency
monitoring tools. The selection of the input and output parameters from these data sets are described
in this section.
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4.2.1. Multi-Layer Perception (MLP)

The multi-layer perception (MLP) is organized in layers, each layer consisting of multiple nodes
(neurons). Each neuron has input connections and creates an output that is propagated to other nodes
in the following layer. Two following layers are fully connected to each other. Weights are assigned
to each connection (wp,q

(l) with p = 0...m(l-1) and q = 0...m(l)). The output depends on the weighted
inputs and an activation function. The number of nodes and the used activation function can vary
between layers. For convenience the 0th layer is named input layer, the (L + 1) th output layer, and all
other layers are hidden layers. The number of nodes in each layer (m(l) + 1) is called the dimension of
layer l. Values set in the input layer are typically described as input vector x = (x0 ...xD)T and values of
the output layer as vector ŷ = (y0 ...yC). Weights for layers are described via matrices. The dimension
of the input layer is determined by the number of input dimensions from the data sets, see Equation
(2). A classic multi-layer perceptron introduced by Rosenblatt [52] is described in Figure 5.

y(l)q = a (
∑p

i=0
w(l)

i,q ∗ y(l−1)
i ) (2)
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A data row can be split into an input and an output vector. For a model that predicts fuel
consumption, Fuel Mass Flow Heavy Fuel Oil Main Engine (HFO ME) Group 1+2 and Fuel Mass
Flow Maritime Diesel Oil (MDO) ME Group 1+2 are defined as y0 and y1. A choice of parameters
such as AWS knots, LWS (longitudinal water speed) knots, relative wind speed (m/s), and others
are chosen for x (see Table A1 in the Appendix A for explanation of parameter abbreviations). To
use the model for predictions, x is set and the network will compute ŷ using all W

(L). Cost (ŷ,
y) defines a cost function that measures the difference between expected output y and calculated
output ŷ (prediction). Training the model means to find a configuration for all weight matrices W

(L)

such that the sum of costs for all predictions over the set of training inputs is minimal. Training is
performed using back-propagation—an algorithm in which the error of a prediction is propagated
backwards into the weight matrices, depending on the weight’s contribution to the error as described
by Rumelhart et al. [53].

The initial hyper parameters have to be chosen before the model is trained. In this paper hyper
parameters are:

• activation function (logistic, arctan, softsign, rectifier, softplus, gaussian, ...);
• learning rate (initial value, time decay);
• learning batch size;
• cost function;
• number of hidden layers;



Appl. Sci. 2020, 10, 2134 12 of 26

• size of hidden layer;
• choice of input parameters.

This opens a rather large search space to perform a brute-force search. Through a few benchmarks,
an activation function was chosen to be the sigmoid function for all layers, except the output layer, for
which we chose the identity function. Our cost function is the MSE (mean-squared error) between
normalized predictions and normalized expected outputs. The learning rate is set to an initial value
of 0.01 and then determined by the Adam algorithm [54]. Batch sizes were initially tested for values
1, 5, 15, 50, 100, 250, and 450. For further tests 50, 150, and 450 were used. To determine the set of
input parameters, number of hidden layers and their dimension we followed the flow-chart depicted
in Figure 6.
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Figure 6. Search for MLP hyper parameters.

The six different sets were evaluated. Their input parameters are grouped into six groups, from A
to F. They were listed in Table 4.

Table 4. Input parameter groups (A to F).

Data Point A B C D E F

Direction X X X X X X
Apparent wind angle (degrees) X X

Apparent wind speed (m/s) X X
Current direction (degrees) X X X X X X

Course over ground (degrees) X X X X X X
Water depth (m) X X

Speed over ground (knots) X X X X X X
Speed through water (knots) X X X X X X
Sea water temperature (◦C) X X

True wind direction (degrees) X X X X
True wind speed (knots) X X X X

journey-time-traveled X X X X X X
wind-speed(m/s)-dwd X X X X

mean-wind-wave-direction(degree)-dwd X X X
swell-wave-height(m)-dwd X X X

mean-swell-wave-direction(degree) X X
wind-wave-height(m)-dwd X X

wind-direction-(degree)-dwd X X X

Figure 7 depicts the MSE between predictions of MLP models and validation data, while testing
different models with different parameters. The MSE values are the average over 5 runs per model
configuration (5-fold). Each configuration was trained with batch sizes of 50, 150 and 450. One can see,
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that with more input parameters, some models could not be trained and resulted in MSE values close
to or greater to 1. Additionally, models with larger parameter number tend to converge faster than
models with fewer parameters (shorter training time, because training is aborted when the model does
not improve).
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Figure 8 shows the relative error to the validation data for different choices of input parameters.
This relative error is the average over all model runs with the described input parameters (varying
network size, batch size, etc.). The selection of some parameters depended on the inclusion of other
parameters, because they are connected semantically (e.g., wind speed and wind direction). It is clearly
visible in Figure 8 that too many input parameters led to models that were not trainable. Given the
amount of data captured (1 or 2 years per ship), the number of trainable weights is too high for the
MLP to converge.
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After intensive search for the best combination of hyper parameters, two MLPs, each with one
hidden layer, containing 10 neurons, were chosen to be the best model in combination with parameter
set E (8 parameters, no weather) or D (10 parameters, including wind data). A batch size of 150 was
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found as the optimal for this data set, when used with an Adam optimizer [54]. Figure 9 shows the
improvement of the MSE over the test data set over training time (number of samples seen) of the
model with parameter set E.
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4.2.2. Self-Organizing Map (SOM)

Self-organizing maps (SOMs) can be trained with unsupervised learning, which allows us to
derive structure from data where we don’t necessarily know the effect of the variables. The algorithm
is designed to find correlations between inputs and outputs using competitive learning (instead of
error-correcting learning like back-propagation). A high-dimensional input space is reduced to a
typically two-dimensional discrete space. Due to SOMs’ non-linear properties, they can be seen as
non-linear biologically inspired generalization of principal component analysis [55,56].

Continuous high-dimensional space is mapped to a low-dimensional and discrete space. Human
brains are known to be dividable into different regions that are more active for certain tasks like hearing,
seeing or motion. Neurons in a SOM are located in the same way, as soon as the SOM has converged.

The input for a SOM is a vector that correlates to (x0, x1,..., xD, y0,..., yC) as described in Section 4.2.1.
Neurons are organized in an n-dimensional space (typically n = 2), called lattice s. Input nodes are
fully connected with all neurons in the lattice. One weight wi = ws,i (or synaptic connection) is assigned
to each neuron i and initialized with a small random number. Like MLP, the SOM has a training and a
mapping phase. During training, three steps are performed:

1. Competition: each neuron calculates its output via wT
I x depending on input vector x. The neuron

with the largest output value is the best matching unit (BMU). If the BMU is excited, it means that
its weights will be updated (synaptic adaptation).

2. Cooperation: the neuron’s location in the lattice implies a neighboring topology to other neurons
in the lattice. Neighboring neurons will also be excited and also undergo synaptic adaptation.

3. Synaptic adaptation: excited neurons change their synaptic connections to increase their output
value for the given stimuli. The degree of change depends on the distance to the BMU, whereas
the BMU will perform the most severe synaptic adaptation among all excited neurons.

After training, the neurons represent a feature map. Their lattice location relative to each other
represents properties from input vectors in the higher dimensional input space. A converged SOM
meets three properties:
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1. The feature map can be used as a decoder and encoder where competition mechanism (finding
the best matching unit) is equivalent to c = encode(x). The weight vector wc represents the
decoded value x’ = decode(c).

2. The SOM is topologically ordered according to features of the input space.
3. When region on the input space occurs more often during training, more neurons will represent

the mapping for these inputs in the feature map (the feature map will have a high resolution for
these regions).

In this paper, SOM is used to make predictions for fuel consumption and find a similarity order
among journeys. If the SOM converges, it can be used to predict fuel consumption for vessel situations
(data rows, or input vectors) that are not included in the training data, if there are enough training
data vectors that are similar to the unseen input vector. Therefore, the process of finding a BMU has to
be altered, such that the Euclidean distance can be masked for some entries of the input- and weight
vectors. The SOM was trained on the input vectors with the dimensions speed through water, relative
wind speed, draught, and fuel consumption can be queried for a prediction of fuel consumption
by masking this entry on all weight vectors and the input vector when comparing them regarding
Euclidean distance in the input space, to find the BMU. After the BMU is found, the previously
masked entries are the result of the prediction query. This process is called encoding, because the
high-dimensional input vector is mapped into the low-dimensional space:

Enc(x) = arg mini (mdistM(x, Wi))

mdistM(x, W) =

√∑
j<M

(x j − xi)
2 (3)

Encoded values can be compared using the lattice distance between neurons. We define the
similarity distance between journeys as:

jdist(A, B) =

∑
(a,b)∈A×B mdistM(a, b)

||A× B||
(4)

with A B set of joined data rows of re-sampled journey A and B. Two journeys may contain different
number of data rows. To overcome this issue, all journeys were re-sampled before comparing them.
Instead of using time as the data row index, we chose relative distance travelled and set the number of
desired data rows to 100 (the longest route of all ships contains 84 data rows). Re-sampling is done by
first calculating the relative distance travelled for each data row, using the sum of speed values of all
previous data rows and the time since start of the journey, divided by the total distance of the journey.
The results are attached as new column to the data rows of the journey, set as index, and then used for
spline interpolation for index values 0 to 1 with 0.01 increments. The parameters for the SOM were
chosen in the same way as hyper parameters of the MLP. After extensive tests, the parameter set D in
combination with a lattice size of 20 × 20 neurons was found as the best-learning model.

In conclusion, we tested different input parameter sets in combination with different
hyper-parameter configurations. All experiments have been conducted using the 5-fold validation
method. A MLP model with up to 10 parameters can be reliably trained on the given data set. Batch
sizes of 50, 150, and 450 have been evaluated and 150 has been found to give the best learning results.
The topologies of 10 × 10 × 1 and 8 × 10 × 1 (parameter set D and E) were found to result in the lowest
MSE on the validation data. More than one hidden layer could either not be trained reliably on the
small data set or did not yield better MSE results. A SOM of a size of 20 × 20 neurons and parameter
set D was found to have the lowest MSE on the validation set.



Appl. Sci. 2020, 10, 2134 16 of 26

4.3. Evaluation

In this section, we present the evaluations of the two neural networks by comparing them to each
other and to the ETA-pilot, which was described in our ethnographic study.

4.3.1. Comparing MLP versus SOM Predictions

We use two evaluation metrics to compare the two different models (SOM, MLP) with each other
regarding accuracy and generalization and regarding accuracy to existing tools. All evaluations are
performed 5-fold: models were trained on 80% of the data and evaluated on the remaining 20% (the
validation fold). This process was repeated five times, such that every evaluation was included in the
training data set four times and used for evaluation once each. Described evaluation metrics in this
section are based on the average over these five runs. Models are evaluated on the following metrics.

1. Accuracy: relative difference between outputs and expected outputs.
2. Generalization: like accuracy, but for models trained on a subset of ships and validated on another,

disjunct set of ships.

We evaluated the following model variants regarding accuracy and generalization for each of the
model types (SOM and MLP) (Table 5). All models are the same regarding hyper parameter, except the
dimension of the input layer for experiment A.

Table 5. Evaluation configurations.

Experiment Training Data Set Generalization Test on

A Ship 1, with weather Ship 5, with weather
B Ship 1 Ship 5
C Ship 1, Ship 5 Ship 2 and 4
D All, except Ship 3 -

Ships 1 and 5 operate on the same route, whereas ship 2 and 4 operate on two further routes. Ship
3 was not used for evaluation because the data quality was not sufficient (too many missing values,
glitches, etc.). The output of the model (prediction) is the estimated fuel consumption at the time of the
given inputs included parameter groups D or E (see Table 4). The signed relative error between model
output and measured fuel consumption is computed. We used a signed metric for these experiments
to see if models were biased to compute results that are too large or too small.

Figure 10 shows the distribution over all evaluated samples. Boxes mark second quartile, median
and third quartile. Whiskers indicate first and fourth quartile. The line inside the box marks the
median, the upper and lower edge of the box the second and third quartile. The whiskers around the
box depict the range of the first and fourth quantile. The MLP model performs best in experiment
C, when looking at accuracy. This could be explained through the increase of available training data
compared to experiments A and B. Models of experiment A and B predict too low fuel consumptions
on the generalization data set. Ship 5 might have different engines or is built in a way that increases the
fuel consumption compared to Ship 1. Experiment C shows that a model that was trained for a specific
route cannot be used to predict fuel consumption for other routes. Prediction errors range from −55%
to +170%. We can see that models that have been trained on a limited set of routes do not generalize
well to predict fuel consumption for other routes. It is not acceptable to build reliable prediction tools
on a mode with a relative error from up to 50%. More data have to be acquired to make these models
more robust. SOMs do perform worse than the MLP models throughout all experiments. Relative
errors of SOM experiments have a median close to 0% but spread to up to over 100%. Although SOMs
are, like MLPs, not robust enough to be used as solid predictors, considering the data set we obtained
(just over a one-year period), the chosen hyper parameters enable the model to be generalizable, when
trained on different ships, meaning that the model’s performance is not dependent on a single ship.
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This is also manifested by the fact that the model that was trained on multiple routes and multiple
vessel voyages perform as well as the models that were trained on only one or two vessels on the same
route (experiment D).
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4.3.2. General Prediction Benchmark

We also compare our MLP and SOM models to the ETA-pilot tool. Ground truth for the experiments
is the summed measured fuel consumption per journey for the Ship 1 in 2015. A total of 218 journeys
could be matched to the captain’s log, which includes the estimation of the ETA-pilot that was issued
before each journey, depending on the weather forecast. The average over summed relative error per
journey for each model is shown in Table 6. One limitation we have is that there is no data specifying,
whether journeys were performed using the recommendations of the ETA-pilot or not. The beginning
and end of the voyages were not included in the experiments, because the ETA-pilot predictions do
not include maneuvering close to port. The results of the models are based on the predicted fuel
consumptions for every recorded data point for each journey. All predictions for one journey were
summed and then compared to the expected fuel consumption for the given journey. The relative
distribution of the difference to the expected fuel consumption is plotted (see Figure 11).
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Table 6. Average over summed relative error per journey for each model.

Model Average Standard Deviation

Baseline (ETA-plot) 5.4 ±17.8
MLP 1.4 ±16.3
SOM 1.1 ±20.5

MLP(Weather) 1.9 ±15.8
SOM(Weather) 4.2 ±21.4

Appl. Sci. 2020, 10, x FOR PEER REVIEW 18 of 26 

Baseline (ETA-plot) 5.4 ±17.8 
MLP 1.4 ±16.3 
SOM 1.1 ±20.5 

MLP(Weather) 1.9 ±15.8 

SOM(Weather) 4.2 ±21.4 

 
Figure 11. Relative error to measured fuel consumption per journey for baseline, MLP and SOM. 

The average relative error and the standard distribution is calculated from the same result set 
as the box plots in Figure 11. Boxes mark second quartile, median and third quartile. Whiskers 
indicate first and fourth quartile. As listed in Table 6 and shown in Figure 11, both the MLP and 
SOM model on average yield a better prediction than the baseline (ETA-pilot). Only our MLP 
model shows a smaller spread of the average relative error, compared to the baseline. We conclude 
that an MLP is better suitable than SOM to estimate the fuel consumption for the given inputs of 
parameter group D or E in Table 4. 

Overall the experiment and development work presented in this phase of “second diamond” 
shows its feasibility and potential value in using historical big data to predict fuel consumption and 
support decision making in eco-driving. Although the models, SOMs and MLPs were still not 
entirely robust, given the data set that we obtained, they are able to outperform the baseline tool 
used onboard in terms of fuel consumption prediction, as it was essentially using the historical data 
rather than following the hardcoded programme. By extracting values out of the large amount of 
data, there is a huge potential to support the development of knowledge of the seafarers and 
maritime EE optimization operations. At the same time, the impact of using big data analytics may 
also generate important insights regarding interface design, shore-based management and perhaps 
future research of ethnography within this domain. 

The big data analytics approach, which was initially informed by the ethnographic research in 
the field, builds up a basis to discuss how we can provide decision support by showing real-time 
fuel consumption prediction. By the time the ethnographic research and the experiments were 
done, the research team presented the findings to the shipping company and obtained their positive 
feedback. They were very interested in the interdisciplinary study. In the initial discussion, they 
raised some sociotechnical questions that point to the needs for further research, for example, how 
to make the predictions more robust, what data were further needed and considerations regarding 
how the management and practitioners shall better accommodate the introduction of big data 
analytics onboard ships to enable improved organizational EE practices. This again echoes the 

Figure 11. Relative error to measured fuel consumption per journey for baseline, MLP and SOM.

The average relative error and the standard distribution is calculated from the same result set as
the box plots in Figure 11. Boxes mark second quartile, median and third quartile. Whiskers indicate
first and fourth quartile. As listed in Table 6 and shown in Figure 11, both the MLP and SOM model on
average yield a better prediction than the baseline (ETA-pilot). Only our MLP model shows a smaller
spread of the average relative error, compared to the baseline. We conclude that an MLP is better
suitable than SOM to estimate the fuel consumption for the given inputs of parameter group D or E in
Table 4.

Overall the experiment and development work presented in this phase of “second diamond”
shows its feasibility and potential value in using historical big data to predict fuel consumption
and support decision making in eco-driving. Although the models, SOMs and MLPs were still not
entirely robust, given the data set that we obtained, they are able to outperform the baseline tool
used onboard in terms of fuel consumption prediction, as it was essentially using the historical data
rather than following the hardcoded programme. By extracting values out of the large amount of data,
there is a huge potential to support the development of knowledge of the seafarers and maritime EE
optimization operations. At the same time, the impact of using big data analytics may also generate
important insights regarding interface design, shore-based management and perhaps future research
of ethnography within this domain.

The big data analytics approach, which was initially informed by the ethnographic research in
the field, builds up a basis to discuss how we can provide decision support by showing real-time
fuel consumption prediction. By the time the ethnographic research and the experiments were
done, the research team presented the findings to the shipping company and obtained their positive
feedback. They were very interested in the interdisciplinary study. In the initial discussion, they
raised some sociotechnical questions that point to the needs for further research, for example, how to
make the predictions more robust, what data were further needed and considerations regarding how
the management and practitioners shall better accommodate the introduction of big data analytics
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onboard ships to enable improved organizational EE practices. This again echoes the complementary
nature of thick data and big data as well as showing the value of a pluralistic epistemology in
exploratory research.

5. Discussion

5.1. Design of Decision Support Systems and Management Practices

The commercially available EE monitoring toolboxes, like the ETA-pilot systems that are employed
on dozens of ferry vessels, are mainly used to display ship sensor information (wind, trim, fuel
consumption etc.). A huge problem is that such systems usually tend to assume the display of
fuel-consumption data curves equals knowledge creation. However, the ethnographic findings
reject this simple assumption, but identify the need to involve context in the process of knowledge
mobilization [57]. A major problem is that the design of this existing tool did not really afford the
meanings behind the numbers, thus the crews would feel difficult to perform efficient monitoring
or flexibly adapt themselves under new circumstances. For example, 20 kg fuel consumption
shown per nautical mile is just a number about the rate of burning fuel, but the crews have little
understanding about its meaning in EE operations. The information about the ongoing trend to
spend more than 5 kg fuel per nautical mile than the “historical average consumption performance”
provides probably more support to their decision making. In other words, a better decision support
interface design should provide the meanings behind the visualizations to enable direct perception and
manipulations, emphasizing the context in which the knowledge could be applied and information
could be operationalized.

Confronted with the energy-saving challenges in the design and use of technology identified in
the ethnographic study, the research team took the predictive-analytical approaches with big data
analytics to explore a path forward. The big data analytics conducted and their evolution in this paper
have clearly suggested that, given an operational and environmental profile, machine learning could
be feasible to (1) predict fuel consumption in real time and (2) represent the most “similar” journeys
and their fuel consumption data (as benchmarks). This is essentially providing a context by attaching
meanings to visual data and making it much easier for human operators to understand, e.g., how this
maneuvering would affect fuel consumption tendency, or how the energy consumption curve for the
same ferry ship under the similar conditions would look like.

One concrete example is given here to show how big data analytics could be employed to support
decision making under different weather conditions. Bad weather could lead to more fuel consumption
while good weather could help to save fuel. The expected values of fuel consumption under both
situations can be considered as useful indicators or measures, to suggest the performance of the
real-time fuel consumption, so that the navigators could have an easily understandable metrics to
evaluate their own EE practice and possibilities to develop their knowledge and awareness in real-time
(or retrospectively).

Figure 12 shows a simplified heuristic design example. The interface plots three curves regarding
fuel consumption from time 14:00 to 23:00. Based on the machine-learning algorithm, trips under similar
weather conditions were classified from the historical big data set. Then the average fuel consumption
values (kg per nautical mile) for “best” and “worst” circumstances are plotted as benchmarks. The
dynamic yellow curve describes the real-time fuel consumption, with the dotted line predicting how
the consumption is going to be if maintaining the same speed and course under the current weather
conditions. In principle the yellow consumption curve should be located between the two other lines
(normal performance), but it might go higher than the worst case or lower than the best case, which
suggests the “moments of learning” for seafarers and the management.
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The idea is not to present a fully-fledged design solution but to suggest a promising direction
for system design: by exploiting the power of big data analytics we may directly relieve some of
the existing pains and create desired gains. Informed by the ethnographic research, the big data
analytics can literally connect the past with the present so that a new sort of knowledge to enable
operationalization could emerge (e.g., how a navigator would try to adjust speed or course when
he/she was able to see the predictable rise in the curve, or how the dynamic system feedback would
allow him/her to form a new understanding about eco-driving and develop capabilities to adapt to the
changing environment). This in essence forms a way to address the knowledge gap and influence the
quality of human experience, as the users would be provided with “affordance” to be acted upon, an
ecological construct that is tightly associated with perception and action [58].

Machine learning with big data analytics cannot only contribute to perception and action at
the sharp end, but also might change the fundamental ways of how organizations make decisions
and manage EE [59]. The evaluations have revealed that proposed models generalize well on
different training data sets from different ships, indicating machine learning’s high-potential role in
creating institutionalized knowledge in an organizational context. Addressing the knowledge gaps in
organizational decision making is crucial [11], especially for establishing new energy-related policies.
In other words, the management needs to see the big picture about what is really going on for the
fleet during the voyage and the data shall provide a basis to ground the ship–shore communication
and energy related decision making. Introducing the big data analytics to the management practices
is an endeavor to create a holistic understanding and establish a bottom-up approach for energy
management (e.g., why certain groups of crew members on average consume more fuel than the other
groups, what challenges they may encounter, what is needed to be done to facilitate their eco-driving,
what measures for EE shall be considered and adopted, etc.). The aim is to take advantage of the power
of big data and enable organizational knowledge mobilization and development, which is a vision that
comes along with our experiments using big data analytics.

5.2. Limitations and Future Research

Although the presented machine-learning models have good performance with respect to the
ETA-pilot, the accuracies of the presented machine-learning models were not ideal and future research is
needed to test more machine-learning algorithms. The trained SOM model yields the worst robustness,
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compared to the MLP and to the existing tools, probably because SOMs require more data samples
to converge into a state that yields a similar performance to the regression models. The collection of
roughly 60 ship-months should be extended to cover a longer time period per ship. Still the evaluation
showed that both MLP and SOM generalize well on different given data sets. This is largely because the
appropriate hyper parameters enabled the models to be generalizable to some extent when trained on
different ferries, meaning that the models’ predictive performance is not bound to one ship. However,
it should also note that the current hyperparameters might not work that well for ships that do not
sail on the same routes, such as tankers and dry bulkers instead of ferries. Therefore, there is a huge
unexploited potential to be trained on different ships and routes in the future.

Hull fouling, maintenance costs could also be included in the model to predict real voyage costs
(which is a composite of more factors than only fuel costs). Current data do not include critical data
points such as trim or draught. The specific type of fuel that was used is also unknown but might
have a big impact on the engines’ performance. Ship sensors work at a higher time resolution than
10 min, but only a 10-min average is stored on hard disks. An increase of the time resolution of stored
sensor data is a promising way to collect more data in order to train better models. For a holistic
energy-efficiency analysis, one has to include long-term costs as for example maintenance costs, that
also depend on the operational profile of the engines. The slow-steaming in shipping might save fuel
but can increase maintenance overhead in cases in which the engines were designed for a different
speed. All these create a vast space for big data analytics.

On the other hand, the work in big data analytics and its derived discussions above also indicate
there is much space for future ethnographic research, which can be employed to discover the meanings
behind big data analytics [28]. The words of the sociologist William Bruce Cameron is that not
everything that counts can be counted, and not everything that can be counted counts. If human users
can gain knowledge (as a social construct) during the use of the technology, would the technology
support the crews’ social interactions (e.g., exchanging ideas to save more fuel)? How would these
types of data-driven predictive tools influence communication in the communities of practice, or the
communication between ship and shore, considering collaborative learning is critical for maritime EE
optimization practices [24]? More importantly, how is the known issue of lack of trust between ship and
shore organization [26] likely to be influenced by the introduction of the human–AI decision systems
also remains to be explored, as the intelligent system will be more involved in the ship operations but
still be put under “administration” of the shore organization? It is important to consider the role of
advanced technology and avoid the erosion of the trust and communication link between ship and
shore. Technology should support the whole organization to evaluate performance and understand
what concrete operations could constitute “best practice” or “worst practice” of EE optimization.
A feasible research direction is to understand how the big data analytics could shape the navigators’
work in the actual field and how would the management practices need to accommodate this. For
designers, this is also a question pertinent to “work as imagine” vs. “work as done” [60]. These
questions are something the big data techniques fall short in answering and we need ethnography
to deliver a deeper understanding of the organizational context in which big data technology gets
utilized, so that better organizational practice (involving big data based systems) could be proposed
and validated later on.

In this paper, ethnographic insights emerge as the departure point for big data analytics and the
big data analytics indicates more possibility for ethnography to understand the context researched. The
“iteration” or “combination” of the ethnography and big data analytics may illustrate the complementary
natures of these two methodologies [44] and the need to develop a richer methodological framework
for future maritime research [61].
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6. Conclusions

This interdisciplinary study provides a detailed description of the use of both the ethnographic
research method and big data analytics to explore the phenomena under study and proposes a
way forward. It uses a fuel monitoring system used onboard and maritime EE as the applied
context. The ethnographic study sets the departure point of the research on big data analytics and
the follow-up discussion. It identifies that the tools available are not suitable for the task and are
not fully understood by the crew. A lack of a performance evaluation and subsequent analytical
approaches have created significant operational barriers in reducing fuel consumption, whereas the
observed shipping company also lacked the competence to deal with the energy-related data. This
informs the need for using big data analytics that have the computational power to analyze data and
support the learning and understanding of actual fuel consumption without adding extra operational
workloads upon the ship operations personnel. Furthermore, the ethnographic research also suggests
some strategic direction that is worth further investigation as well as some features that may be
playing significant roles in machine-learning modelling, such as speed, course, locations, wind, fuel
consumption. Therefore, the introduction of big data analytics is situated in a particular context
(rather than “decontextualization” typical of most technical studies or controlled environments).
This paper did not stop after the ethnographic study but continues to take further steps to explore
feasible solutions. A detailed process was provided regarding how the big data analytics were applied
to develop predictive-analytical algorithms by using real ship data and evaluating supervised and
unsupervised machine-learning techniques. The evaluation showed that based on the training data
set the models output more accurate predictions on fuel consumption on average, compared with
the existing tool used onboard ships, suggesting a huge potential for system design that can support
decision making and improve EE optimization practice. The work around AI also raises more questions
that direct future ethnographic research.

The purpose to employ the ethnographic study and big data analytics in this research project is not
to produce something that can immediately replace the technology used onboard but to demonstrate
the process of an interdisciplinary research approach in which big data analytics could be initially
inspired and informed by ethnographic research. That is the value of the pluralistic epistemology [62]
as multiple complementary perspectives (big data and thick data) are taken to explore the connections
between disciplinary knowledge. This completes the closure of a system design in the double diamond
framework and forms a body of holistic knowledge of interdisciplinary applied research in the maritime
EE domain.

As discussed in the paper, more thick data might still be required to reveal the social context
and generate meaningful insights behind big data, which would form an iterative research paradigm.
Our interdisciplinary study has shed light on what should be considered when designing decision
support systems as well as management practices from the perspectives of human–computer interaction
and ship–shore interaction. The complementary nature of big data and ethnography [44] revealed
might suggest a methodologically reflexive path forward for future maritime energy research.
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Appendix A

Table A1. Measurements of on-board ship sensors.

Data Point Name Explanation Comment

date-time local time
duration unknown not used

fuel mass flow HFO ME heavy fuel oil, main engines group 1 and 2
fuel mass flow MDO ME marine diesel oil, main engines group 1 and 2
fuel mass flow HFO AUX heavy fuel oil, auxiliary engines group 1 and 2
fuel mass flow MDO AUX marine diesel oil, auxiliary engines group 1 and 2

fuel mass flow per nm fuel mass
flow total (kg/h) tons per nautical mile

AWA apparent wind angle in degrees relative to ship’s heading
AWS knots apparent wind speed
AWS m/s apparent wind speed

COG course over ground in degrees magnetic/GPS
CDIR current direction magnetic/GPS

CSPD knots current speed
CSPD (m/s) current speed

displacement (mt) amount of displaced water not used
DBT (m) water depth not used

distance (nm) usage unknown ranges between 0 and 2

draft aft (m) depth of ship, measured at the stern of
the vessel no used

draft fore (m) depth of ship, measured at the bow of
the vessel no used

HTD (rad) heading true
heel (deg) roll, heeling angle (upright = 0)

LWS(knots) longitudinal water speed
LWS froude (knots) froude speed through water not used
PowerConsBT (kW) power consumption for bow thruster separate for 4 thrusters

PowerProdAux (kW) power production aux engines separate for 5 engines
PowerProdShore (kW) power intake shore connection

PowerProdShaftGen (kW) power production shaft generator separated for each ME
propulsion pitch (%) % of maximum propeller pitch separated for each propeller

propulsion RPM propulsion of an engine separated for each shaft
propulsion power (%) % of maximum power output separated for each shaft
SFOC MDO (g/kWh) specific oil consumption no data
SFOC HFO (g/kWh) specific oil consumption no data

SOG (knots) speed over ground
SOG Froude (knot) froude speed over ground

SWT (knot) speed through water
sea water temperature (◦C)

TWDIR (degrees) true wind direction

TWS (degrees) true wind speed not used
TWSPD (degrees) true wind speed

trim (m) difference of draftaft/-fore not used
trim dynamic (m) difference of draftaft/-fore not used
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