71 research outputs found

    Red Sea Rifting Controls on Groundwater Reservoir Distribution: Constraints from Geophysical, Isotopic, and Remote Sensing Data

    Get PDF
    Highly productive wells in the Central Eastern Desert of Egypt are tapping groundwater in subsided blocks of Jurassic to Cretaceous sandstone (Taref Formation of the Nubian Sandstone Group) and Oligocene to Miocene sandstone (Nakheil Formation), now occurring beneath the Red Sea coastal plain and within the proximal basement complex. Aquifer development is related to Red Sea rifting: (1) rifting was accommodated by vertical extensional displacement on preexisting NW-SE– to N-S–trending faults forming a complex array of half-grabens and asymmetric horsts; and (2) subsided blocks escaped erosion accompanying the Red Sea–related uplift. Subsided blocks were identifi ed and verifi ed using satellite data, geologic maps, and fi eld and geophysical investigations. Interpretations of very low frequency (VLF) measurements suggest the faults acted as conduits for ascending groundwater from the subsided aquifers. Stable isotopic compositions (δD: –19.3‰ to –53.9‰; δ18O: –2.7‰ to –7.1‰) of groundwater samples from these aquifers are interpreted as mixtures of fossil (up to 70%) and modern (up to 65%) precipitation. Groundwater volumes in subsided blocks are large; within the Central Eastern Desert basement complex alone, they are estimated at 3 × 109 m3 and 10 × 109 m3 for the Nakheil and Taref Formations, respectively. Results highlight the potential for identifying similar rift-related aquifer systems along the Red Sea–Gulf of Suez system, and in rift systems elsewhere. An understanding of the distribution of Red Sea rift–related aquifers and modern recharge contributions to these aquifers could assist in addressing the rising demands for fresh water supplies and water scarcity issues in the regio

    Red Sea Rifting Controls on Groundwater Reservoir Distribution: Constraints from Geophysical, Isotopic, and Remote Sensing Data

    Get PDF
    Highly productive wells in the Central Eastern Desert of Egypt are tapping groundwater in subsided blocks of Jurassic to Cretaceous sandstone (Taref Formation of the Nubian Sandstone Group) and Oligocene to Miocene sandstone (Nakheil Formation), now occurring beneath the Red Sea coastal plain and within the proximal basement complex. Aquifer development is related to Red Sea rifting: (1) rifting was accommodated by vertical extensional displacement on preexisting NW-SE– to N-S–trending faults forming a complex array of half-grabens and asymmetric horsts; and (2) subsided blocks escaped erosion accompanying the Red Sea–related uplift. Subsided blocks were identifi ed and verifi ed using satellite data, geologic maps, and fi eld and geophysical investigations. Interpretations of very low frequency (VLF) measurements suggest the faults acted as conduits for ascending groundwater from the subsided aquifers. Stable isotopic compositions (δD: –19.3‰ to –53.9‰; δ18O: –2.7‰ to –7.1‰) of groundwater samples from these aquifers are interpreted as mixtures of fossil (up to 70%) and modern (up to 65%) precipitation. Groundwater volumes in subsided blocks are large; within the Central Eastern Desert basement complex alone, they are estimated at 3 × 109 m3 and 10 × 109 m3 for the Nakheil and Taref Formations, respectively. Results highlight the potential for identifying similar rift-related aquifer systems along the Red Sea–Gulf of Suez system, and in rift systems elsewhere. An understanding of the distribution of Red Sea rift–related aquifers and modern recharge contributions to these aquifers could assist in addressing the rising demands for fresh water supplies and water scarcity issues in the regio

    Submarine Groundwater Discharge Data at Meter Scale (223Ra, 224Ra, 226Ra, 228Ra and 222Rn) in Indian River Bay (Delaware, US)

    Get PDF
    Abstract Submarine groundwater discharge (SGD) was sampled at high-spatial resolution in Indian River Bay, DE, USA, in July 2016 to characterize the spatial variability of the activity of the radium and radon isotopes commonly used to estimate SGD. These data were part of an investigation into the methods and challenges of characterizing SGD rates and variability, especially in the coastal aquifer transition from freshwater to saltwater (Hydrogeological processes and near shore spatial variability of radium and radon isotopes for the characterization of submarine groundwater discharge (Duque et al., 2019)). Samples were collected with seepage meters and minipiezometers to obtain sufficient volumes for analytical characterization. Seepage meter samples (for 223Ra, 224Ra, 226Ra, and 228Ra) were collected at two-hour intervals over a semi-diurnal tidal cycle from 30 seepage meters. Samples for 222Rn characterization were collected with a minipiezometer from 25 cm below the bay bed at each seepage meter location. All samples were analyzed with standard and state of the art procedures

    Inter-laboratory Characterisation of Apatite Reference Materials for Chlorine Isotope Analysis

    Get PDF
    Here we report on a set of six apatite reference materials (chlorapatites MGMH#133648, TUBAF#38 and fluorapatites MGMH#128441A, TUBAF#37, 40, 50) which we have characterised for their chlorine isotope ratios; these RMs span a range of Cl mass fractions within the apatite Ca-10(PO4)(6)(F,Cl,OH)(2) solid solution series. Numerous apatite specimens, obtained from mineralogical collections, were initially screened for Cl-37/Cl-35 homogeneity using SIMS followed by delta Cl-37 characterisation by gas source mass spectrometry using both dual-inlet and continuous-flow modes. We also report major and key trace element compositions as determined by EPMA. The repeatability of our SIMS results was better than +/- 0.10% (1s) for the five samples with > 0.5% m/m Cl and +/- 0.19% (1s) for the low Cl abundance material (0.27% m/m). We also observed a small, but significant crystal orientation effect of 0.38% between the mean Cl-37/Cl-35 ratios measured on three oriented apatite fragments. Furthermore, the results of GS-IRMS analyses show small but systematic offset of delta Cl-37(SMOC) values between the three laboratories. Nonetheless, all studied samples have comparable chlorine isotope compositions, with mean 10(3)delta Cl-37(SMOC) values between +0.09 and +0.42 and in all cases with 1s <= +/- 0.25

    Deposition, Accumulation, and Alteration of Cl(-), NO3(-), ClO4(-) and ClO3(-) Salts in a Hyper-Arid Polar Environment: Mass Balance and Isotopic Constraints

    Get PDF
    The salt fraction in permafrost soils/sediments of the McMurdo Dry Valleys (MDV) of Antarctica can be used as a proxy for cold desert geochemical processes and paleoclimate reconstruction. Previous analyses of the salt fraction in MDV permafrost soils have largely been conducted in coastal regions where permafrost soils are variably affected by aqueous processes and mixed inputs from marine and stratospheric sources. We expand upon this work by evaluating permafrost soil/sediments in University Valley, located in the ultraxerous zone where both liquid water transport and marine influences are minimal. We determined the abundances of Cl(-), NO3(-, ClO4(-)and ClO3(-)in dry and ice-cemented soil/sediments, snow and glacier ice, and also characterized Cl(-) and NO3(-) isotopically. The data are not consistent with salt deposition in a sublimation till, nor with nuclear weapon testing fall-out, and instead point to a dominantly stratospheric source and to varying degrees of post depositional transformation depending on the substrate, from minimal alteration in bare soils to significant alteration (photodegradation and/or volatilization) in snow and glacier ice. Ionic abundances in the dry permafrost layer indicate limited vertical transport under the current climate conditions, likely due to percolation of snowmelt. Subtle changes in ClO4(-)/NO3(-) ratios and NO3(-) isotopic composition with depth and location may reflect both transport related fractionation and depositional history. Low molar ratios of ClO3(-)/ClO4(-) in surface soils compared to deposition and other arid systems suggest significant post depositional loss of ClO3(-), possibly due to reduction by iron minerals, which may have important implications for oxy-chlorine species on Mars. Salt accumulation varies with distance along the valley and apparent accumulation times based on multiple methods range from approximately 10 to 30 kyr near the glacier to 70-200 kyr near the valley mouth. The relatively young age of the salts and relatively low and homogeneous anion concentrations in the ice-cemented sediments point to either a mechanism of recent salt removal, or to relatively modern permafrost soils (less than 1 million years). Together, our results show that near surface salts in University Valley serve as an end-member of stratospheric sources not subject to biological processes or extensive remobilization

    Perchlorate in The Great Lakes: Isotopic Composition and Origin

    Get PDF
    Perchlorate is a persistent and mobile contaminant in the environment with both natural and anthropogenic sources. Stable isotope ratios of oxygen (δ^(18)O, Δ^(17)O) and chlorine (δ^(37)Cl) along with the abundance of the radioactive isotope ^(36)Cl were used to trace perchlorate sources and behavior in the Laurentian Great Lakes. These lakes were selected for study as a likely repository of recent atmospheric perchlorate deposition. Perchlorate concentrations in the Great Lakes range from 0.05 to 0.13 μg per liter. Δ^(37)Cl values of perchlorate from the Great Lakes range from +3.0‰ (Lake Ontario) to +4.0‰ (Lake Superior), whereas δ^(18)O values range from −4.1‰ (Lake Superior) to +4.0‰ (Lake Erie). Great Lakes perchlorate has mass-independent oxygen isotopic variations with positive Δ^(17)O values (+1.6‰ to +2.7‰) divided into two distinct groups: Lake Superior (+2.7‰) and the other four lakes (∼+1.7‰). The stable isotopic results indicate that perchlorate in the Great Lakes is dominantly of natural origin, having isotopic composition resembling that measured for indigenous perchlorate from preindustrial groundwaters of the western USA. The ^(36)Cl/Cl ratio of perchlorate varies widely from 7.4 × 10^(–12) (Lake Ontario) to 6.7 × 10^(–11) (Lake Superior). These ^(36)ClO_4– abundances are consistent with an atmospheric origin of perchlorate in the Great Lakes. The relatively high ^(36)ClO_4– abundances in the larger lakes (Lakes Superior and Michigan) could be explained by the presence of ^(36)Cl-enriched perchlorate deposited during the period of elevated atmospheric ^(36)Cl activity following thermonuclear bomb tests in the Pacific Ocean
    corecore