Precipitation of U(VI) in Low-Temperature Si-Na-H₂O±CO₂±Feldspar Systems

Kathryn L. Nagy¹ Neil C. Sturchio¹ Christophe Darnault² Linda Soderholm³ 1 Earth and Environmental Sciences Ashaki Rouff (now at PSI) Burcu Uyusur Soufiane Mekki

- 2 Civil and Materials Engineering University of Illinois at Chicago
- 3 Chemistry Division Argonne National Laboratory Drew Gorman-Lewis Suntharalingam Skanthakumar Mark Jensen

To identify and quantify processes motivated by observations from the Hanford Site

Hyperalkaline Hypersaline Al-rich $10 \,\mu m$ Liu et al., 2004

Samson et al., GCA, 2005; Nagy et al., in prep.

рΗ

Quartz Dissolution at 90°C, *high pH:* Nitrate Cancrinite precipitates; Starts as a film in more recessed areas in quartz surface.

structure from Hund (1984) Z. Anorg. Atlg. Chem. 509, 153.

Bickmore et al., ES&T, 2001

Heterogeneous Precipitation of Nitrate Cancrinite on Quartz

 $0.005 \text{ m Al}(\text{OH})_4^-$ - 24 days

0.01 m Al(OH)₄⁻ - 13 days

Initial Precipitation Rates

Rate_{ppt} (mol cancrinite/s) = $1.03 \pm 0.05 \times 10^{-6} [AI]^{1.22} [Si]^{0.23}$

April 21, 2005

Contact Information: David Watson (865-241-4749) - FRC Manager Environmental Sciences Division Oak Ridge National Laboratory E-Mail: watsondb@ornl.gov

NABIR Field Research Center

Oak Ridge Field Research Center

http://www.esd.ornl.gov/nabirfrc/

6-50250 CM

U. S. DEPARTMENT OF ENERGY

Aluminosilicate minerals dissolve faster in acidic and basic solutions than at neutral pH.

Samson et al., GCA, 2005; Nagy et al., in prep.

Uranium-silicates:

Alteration of spent fuel Alteration of vitrified nuclear waste Uranium mines

Soddyite $(UO_2)_2(SiO_4)^2H_2O$

> K-Boltwoodite K(UO₂)(SiO₃)(OH)⁻1.5H₂O

BX-102 Tank U(VI) speciated as $UO_2(CO_3)_3^{4-}$ T = 80 °C; pH = 10 Possible mechanism of U-Silicate formation

Na-boltwoodite; μ-XRD and μ-XRF (Catalano et al., 2004)
53% boltwoodite, 42% uranophane; 4% soddyite; TRLFS (timeresolved laser fluorescence spectroscopy) (Wang et al. 2005)
Na-boltwoodite or uranophane; dissolution (Liu et al. 2004)

Borehole Core Analysis

- o Tank solutions diluted in vadose zone, but relative to background:
 - o elevated concentration of uranium
 - o lower concentration of silica
- o T and pH decrease as the plume moves away from source

Liu et al., 2004, GCA

	SiO _{2(ag)}			T°C
	UO ₂ ⁺⁺ (M)	(M)	рН	
Tank Solution	1.03E-01	4.00E-03	10	80
Contaminated PW	1.85E-03	7.16E-04	9	
Uncontaminated PW	1.63E-07	4.99E-03		

Si Source for U-silicate formation:

Dissolution of Labradorite Feldspar: An₆₀ Ca_(50-70%)Na_(50-30%)(AI,Si)AlSi₂O₈

SEM image of feldspar reacted with simulated tank waste Bates, 2004, UIC M.S. Thesis

What U-silicates form at low temperatures as a function of: pH, U concentration, Si concentration ? What controls homogeneous vs. heterogeneous nucleation?

What factors control and what are the kinetics?

APPROACH:

Synthesis experiments: with and without CO₂ varying pH, U, Si concentrations presence or absence of feldspar effect of drying, time, and temperature Structural & compositional analyses: HEXS & SAXS EXAFS spectroscopy FTIR, XRD Solid & solution compositions Unifying predictive equations

The uranyl-silicato monomer complex

U-silicate solution species highest at lower pH (system without CO₂)

U-silicate solution species decreases at higher pH (system with CO₂)

Solution compositions for initial scattering experiments:

UIC samples 0

- o $0.23 \text{ M UO}_2(\text{NO}_3)_2$
- o 0.01-0.25 M Na₂SiO₃•9H₂O
- o U added to Si stock
- o U analysis by α -counting
- Not analyzed by scattering 0

Sample Set 1 0

- o 0.30-0.59 M UO₂(ClO₄)₂
- o 0.04-0.29 M Na₂SiO₃•9H₂O
- o Si added to U stock

Sample Set 2 0

- o 0.20-0.48 M UO₂(ClO₄)₂
- o 0.03-0.09 M Na₂SiO₃•9H₂O
- o Si reagent added incrementally

Open to atmosphere; pH ~ 2-4

[U] M

Precipitate increases with ↑ [Si] & ↓ [U]

Σ liv V

0.35

SYNTHESIS EXPERIMENTS without CO₂ for initial HEXS analysis

- Prepared in glove box under Ar_(g) atmosphere
- 0 0.25 M UO₂(CIO₄)₂
- \circ 0.01-0.25 M Na₂SiO₃•9H₂O
- Si added incrementally to U stock
- o pH measured (~2.5-4)
- o Sampled for analysis
 - o U: α -counting
 - o Si: UV-Vis & ICP-OES
- o 2 sample sets:
 - o LongTerm: 8 weeks
 - o ShortTerm: 2 weeks

High Energy X-ray Scattering: Pair Distribution Function

HEXS: Pair Distribution Function

Similar results - Little effect of time visible in the data

Comparison with Hanford vadose zone:

SYNTHESIS EXPERIMENTS with CO₂ HEXS, FTIR, XRD analysis

- Prepared on benchtop open to the atmosphere
- 0 0.990 M UO₂(CIO₄)₂
- \circ 0.105 M Na₂SiO₃•9H₂O
- 50 μL U-solution (0.05 M U_f)
 950 μL Si-solution (0.1 M Si_f)
- o pH adjusted from 2.2 to 9.0
- 4 da @ 150°C for similar
 pH 5.1 to 9.1 samples
- Solids analyzed for U & Si by spectrophotometry
- Solids analyzed by XRD, FTIR, and HEXS

X-ray Diffraction of Room Temperature Solids – air-dried

X-ray Diffraction of Solids heated at 150°C for 4 days

FTIR on Room T samples, aged for 6 weeks and air-dried

HEXS: Pair Distribution Function – Room T Precipitates

Mounted after 60 minutes; analyzed within 24 hours

HEXS: Pair Distribution Function – 150°C Precipitates

Reacted 4 days; air-dried

Pair Distances for 150°C Precipitates

Average Pair Distances for Room T Precipitates

Other work in progress:

	U [M]	Si [M]	CO2	pН
1	1.0E-03		atm	6.5
2	1.0E-03	1.0E-03	atm	6.5
3	1.0E-03		atm	9.0
4	1.0E-03		N/A	9.0
5	1.0E-04		atm	6.5
6	1.0E-04	1.0E-03	atm	6.5
7	1.0E-04		atm	9.0
8	1.0E-04		N/A	9.0
9	1.0E-05		atm	6.5
10	1.0E-05		atm	6.5
11	1.0E-05	1.0E-03	atm	6.5
12	1.0E-05		atm	9.0
13	1.0E-05		N/A	9.0
14	1.0E-06		atm	6.5
15	1.0E-06	1.0E-03	atm	6.5
16	1.0E-06		atm	9.0
17	1.0E-06		N/A	9.0
18	1.0E-07		atm	6.5
19	1.0E-07	1.0E-03	atm	6.5
20	1.0E-07		atm	9.0
21	1.0E-07		N/A	9.0

EXAFS spectroscopic analysis of U uptake on labradorite feldspar - at pH 6.5 and 9.0 - with and without CO₂

- with and without CO_2 - with and without added Si

Other work in progress:

Summary: U-Silicate Nucleation and Precipitation

Solution compositional space is being refined with respect to merging experimental and analytical needs with simulation of reality

High Energy X-ray Scattering (HEXS) shows systematic, reproducible, but subtle changes in U-Si and U-U pair distances with changes in pH, [U], and [Si]

FTIR is sensitive to subtle changes in bonding environment of U in mixed precipitates

Little change in precipitate structures is observed at short times (to 8 weeks)

Precipitate structures are changed upon drying

Increasing temperature, thought to accelerate rates of crystallization, does not appear to have equal effect at all pHs.