4 research outputs found

    The Second-Generation Guide Star Catalog: Description and Properties

    Full text link
    The GSC-II is an all-sky database of objects derived from the uncompressed DSS that the STScI has created from the Palomar and UK Schmidt survey plates and made available to the community. Like its predecessor (GSC-I), the GSC-II was primarily created to provide guide star information and observation planning support for HST. This version, however, is already employed at some of the ground-based new-technology telescopes such as GEMINI, VLT, and TNG, and will also be used to provide support for the JWST and Gaia space missions as well as LAMOST, one of the major ongoing scientific projects in China. Two catalogs have already been extracted from the GSC-II database and released to the astronomical community. A magnitude-limited (R=18.0) version, GSC2.2, was distributed soon after its production in 2001, while the GSC2.3 release has been available for general access since 2007. The GSC2.3 catalog described in this paper contains astrometry, photometry, and classification for 945,592,683 objects down to the magnitude limit of the plates. Positions are tied to the ICRS; for stellar sources, the all-sky average absolute error per coordinate ranges from 0.2" to 0.28" depending on magnitude. When dealing with extended objects, astrometric errors are 20% worse in the case of galaxies and approximately a factor of 2 worse for blended images. Stellar photometry is determined to 0.13-0.22 mag as a function of magnitude and photographic passbands (B,R,I). Outside of the galactic plane, stellar classification is reliable to at least 90% confidence for magnitudes brighter than R=19.5, and the catalog is complete to R=20.Comment: 52 pages, 33 figures, to be published in AJ August 200

    The type IC SN 1990B in NGC 4568

    Get PDF
    We present a study of the Type Ic supernova (SN) 1990B that includes most of the observations obtained from around the world. The combined data set comprises 84 BV(RI)c photometric points spanning approximately 360 days after maximum light and 14 spectra from 5 up to ~150 days after maximum light. In contrast to other Type Ic SNe, SN 1990B did not display a weak but distinct He I λ5876 line indicating that its He content was smaller or that the He layers were rather effectively shielded from the radioactive matter in the ejecta. The behavior of the Na I D line, however, suggests that He I λ5876 was blended with it. SN 1990B appeared on a sharply varying background that complicates the usual techniques of digital photometry. In order to do unbiased photometry, we modeled and subtracted the background of each image with the SN using images of NGC 4568 taken ~2500 days after the explosion, when SN 1990B had faded beyond detection. We compare the performance of standard point-spread function fitting photometry of the SN in the images with and without the background of the parent galaxy and find the results to differ systematically at late times. The photometry done on the images with the background light of NGC 4568 subtracted shows the light curves of SN 1990B to be of the slow Type Ic variety, with a slope steeper than that of the Type Ib SN 1983N or the Type II transition (Type IIb) SN 1993J but slower than that of the Type Ic SN 1994I. We estimate the reddening by foreground matter in the Galaxy and NGC 4568 and compute BV(RI)c light curves spanning ~110 days after maximum light
    corecore