10 research outputs found

    Temperature regulation responses of ornate box turtles, Terrapene ornata, to heat

    No full text

    Immunomagnetic Separation (IMS)-Fluorescent Antibody Detection and IMS-PCR Detection of Seeded Cryptosporidium parvum Oocysts in Natural Waters and Their Limitations

    No full text
    Detection and enumeration of Cryptosporidium parvum in both treated and untreated waters are important to facilitate prevention of future cryptosporidiosis incidents. Immunomagnetic separation (IMS)-fluorescent antibody (FA) detection and IMS-PCR detection efficiencies were evaluated in two natural waters seeded with nominal seed doses of 5, 10, and 15 oocysts. IMS-FA detected oocysts at concentrations at or below the three nominal oocyst seed doses, illustrating that IMS-FA is sensitive enough to detect low oocyst numbers. However, the species of the oocysts could not be determined with this technique. IMS-PCR, targeting the 18S rRNA gene in this study, yielded positive amplification for 17 of the 18 seeded water samples, and the amplicons were subjected to restriction fragment length polymorphism digestion and DNA sequencing for species identification. Interestingly, the two unseeded, natural water samples were also PCR positive; one amplicon was the same base pair size as the C. parvum amplicon, and the other amplicon was larger. These two amplified products were determined to be derived from DNA of Cryptosporidium muris and a dinoflagellate. These IMS-PCR results illustrate that (i) IMS-PCR is able to detect low oocyst numbers in natural waters, (ii) PCR amplification alone is not confirmatory for detection of target DNA when environmental samples are used, (ii) PCR primers, especially those designed against the rRNA gene region, need to be evaluated for specificity with organisms closely related to the target organism, and (iv) environmental amplicons should be subjected to appropriate species-specific confirmatory techniques

    In vivo corneal confocal microscopy in keratoconus

    No full text
    PURPOSE: To evaluate the corneas of keratoconic subjects using in vivo confocal microscopy. METHODS: Slit scanning confocal microscopy was used to evaluate the central cornea of one eye of each of 29 keratoconic subjects (mean age 31 +/- 10 years; range 16-49 years). Quantitative aspects of corneal morphology were compared against data from control subjects. RESULTS: Compared with normal control corneas, epithelial wing cell nuclei were larger (p < 0.0001) and epithelial basal cell diameter was larger (p < 0.05) in the keratoconic cornea. Many of the keratoconic corneas investigated showed increased levels of stromal haze and reflectivity, which appeared to be related to the presence of apical scarring on slit lamp examination. A grading scale was devised to quantify the levels of haze. This scale was shown to provide a measure of the level of scarring present. The anterior keratocyte density (AKD) and posterior keratocyte density were 19% lower (p < 0.0001) and 10% lower (p = 0.004) than in controls, respectively. The reduction in AKD was significantly associated with three factors: a history of atopy, eye rubbing and the presence of corneal staining. The mean endothelial cell density in keratoconus was 6% greater than that of normal controls (p = 0.05). The level of endothelial polymegethism was shown not to be different between keratoconic subjects and matched controls (paired t-test: t = 1.82, p = 0.08). CONCLUSIONS: Confocal microscopy demonstrates significant quantitative alterations of corneal morphology in keratoconus
    corecore