413 research outputs found

    The Hepatic Monocarboxylate Transporter 1 (MCT1) Contributes to the Regulation of Food Anticipation in Mice.

    Get PDF
    Daily recurring events can be predicted by animals based on their internal circadian timing system. However, independently from the suprachiasmatic nuclei (SCN), the central pacemaker of the circadian system in mammals, restriction of food access to a particular time of day elicits food anticipatory activity (FAA). This suggests an involvement of other central and/or peripheral clocks as well as metabolic signals in this behavior. One of the metabolic signals that is important for FAA under combined caloric and temporal food restriction is β-hydroxybutyrate (βOHB). Here we show that the monocarboxylate transporter 1 (Mct1), which transports ketone bodies such as βOHB across membranes of various cell types, is involved in FAA. In particular, we show that lack of the Mct1 gene in the liver, but not in neuronal or glial cells, reduces FAA in mice. This is associated with a reduction of βOHB levels in the blood. Our observations suggest an important role of ketone bodies and its transporter Mct1 in FAA under caloric and temporal food restriction

    Neural correlates of individuation and categorization of other-species faces in infancy

    Get PDF
    The goal of this study was to investigate 9-month-old infants' ability to individuate and categorize other-species faces at the subordinate level. We were also interested in examining the effects of initial exposure conditions on infant categorization and individuation processes. Infants were either familiarized with a single monkey face in an individuation procedure or familiarized with multiple exemplars of monkey faces from the same species in a categorization procedure. Event-related potentials were recorded while the infants were presented: familiar faces, novel faces from the familiar species, or novel faces from a novel species. The categorization group categorized monkey faces by species at the subordinate level, whereas the individuation group did not discriminate monkey faces at the individual or subordinate level. These findings indicate initial exposure to multiple exemplars facilitates infant processing of other-species faces, and infants are efficient at subordinate-level categorization at 9 months of age

    Kepler Presearch Data Conditioning II - A Bayesian Approach to Systematic Error Correction

    Full text link
    With the unprecedented photometric precision of the Kepler Spacecraft, significant systematic and stochastic errors on transit signal levels are observable in the Kepler photometric data. These errors, which include discontinuities, outliers, systematic trends and other instrumental signatures, obscure astrophysical signals. The Presearch Data Conditioning (PDC) module of the Kepler data analysis pipeline tries to remove these errors while preserving planet transits and other astrophysically interesting signals. The completely new noise and stellar variability regime observed in Kepler data poses a significant problem to standard cotrending methods such as SYSREM and TFA. Variable stars are often of particular astrophysical interest so the preservation of their signals is of significant importance to the astrophysical community. We present a Bayesian Maximum A Posteriori (MAP) approach where a subset of highly correlated and quiet stars is used to generate a cotrending basis vector set which is in turn used to establish a range of "reasonable" robust fit parameters. These robust fit parameters are then used to generate a Bayesian Prior and a Bayesian Posterior Probability Distribution Function (PDF) which when maximized finds the best fit that simultaneously removes systematic effects while reducing the signal distortion and noise injection which commonly afflicts simple least-squares (LS) fitting. A numerical and empirical approach is taken where the Bayesian Prior PDFs are generated from fits to the light curve distributions themselves.Comment: 43 pages, 21 figures, Submitted for publication in PASP. Also see companion paper "Kepler Presearch Data Conditioning I - Architecture and Algorithms for Error Correction in Kepler Light Curves" by Martin C. Stumpe, et a

    Corrigendum: Collective search by ants in microgravity

    Get PDF
    The problem of collective search is a tradeoff between searching thoroughly and covering as much area as possible. This tradeoff depends on the density of searchers. Solutions to the problem of collective search are currently of much interest in robotics and in the study of distributed algorithms, for example to design ways that without central control robots can use local information to perform search and rescue operations. Ant colonies operate without central control. Because they can perceive only local, mostly chemical and tactile cues, they must search collectively to find resources and to monitor the colony's environment. Examining how ants in diverse environments solve the problem of collective search can elucidate how evolution has led to diverse forms of collective behavior. An experiment on the International Space Station in January 2014 examined how ants (Tetramorium caespitum) perform collective search in microgravity. In the ISS experiment, the ants explored a small arena in which a barrier was lowered to increase the area and thus lower ant density. In microgravity, relative to ground controls, ants explored the area less thoroughly and took more convoluted paths. It appears that the difficulty of holding on to the surface interfered with the ants’ ability to search collectively. Ants frequently lost contact with the surface, but showed a remarkable ability to regain contact with the surface

    Kepler Presearch Data Conditioning I - Architecture and Algorithms for Error Correction in Kepler Light Curves

    Full text link
    Kepler provides light curves of 156,000 stars with unprecedented precision. However, the raw data as they come from the spacecraft contain significant systematic and stochastic errors. These errors, which include discontinuities, systematic trends, and outliers, obscure the astrophysical signals in the light curves. To correct these errors is the task of the Presearch Data Conditioning (PDC) module of the Kepler data analysis pipeline. The original version of PDC in Kepler did not meet the extremely high performance requirements for the detection of miniscule planet transits or highly accurate analysis of stellar activity and rotation. One particular deficiency was that astrophysical features were often removed as a side-effect to removal of errors. In this paper we introduce the completely new and significantly improved version of PDC which was implemented in Kepler SOC 8.0. This new PDC version, which utilizes a Bayesian approach for removal of systematics, reliably corrects errors in the light curves while at the same time preserving planet transits and other astrophysically interesting signals. We describe the architecture and the algorithms of this new PDC module, show typical errors encountered in Kepler data, and illustrate the corrections using real light curve examples.Comment: Submitted to PASP. Also see companion paper "Kepler Presearch Data Conditioning II - A Bayesian Approach to Systematic Error Correction" by Jeff C. Smith et a

    Reproducibility of 3-dimensional ultrasound readings of volume of carotid atherosclerotic plaque

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-invasive 3-dimensional (3D) ultrasound (US) has emerged as the predominant approach for evaluating the progression of carotid atherosclerosis and its response to treatment. The aim of this study was to investigate the quality of a central reading procedure concerning plaque volume (PV), measured by 3D US in a multinational US trial.</p> <p>Methods</p> <p>Two data sets of 45 and 60 3D US patient images of plaques (mean PV, 71.8 and 39.8 μl, respectively) were used. PV was assessed by means of manual planimetry. The intraclass correlation coefficient (ICC) was applied to determine reader variabilities. The repeatability coefficient (RC) and the coefficient of variation (CV) were used to investigate the effect of number of slices (S) in manual planimetry and plaque size on measurement variability.</p> <p>Results</p> <p>Intra-reader variability was small as reflected by ICCs of 0.985, 0.967 and 0.969 for 3 appointed readers. The ICC value generated between the 3 readers was 0.964, indicating that inter-reader variability was small, too. Subgroup analyses showed that both intra- and inter-reader variabilities were lower for larger than for smaller plaques. Mean CVs were similar for the 5S- and 10S-methods with a RC of 4.7 μl. The RC between both methods as well as the CVs were comparatively lower for larger plaques.</p> <p>Conclusion</p> <p>By implementing standardised central 3D US reading protocols and strict quality control procedures highly reliable ultrasonic re-readings of plaque images can be achieved in large multicentre trials.</p

    Detection of Potential Transit Signals in the First Three Quarters of Kepler Mission Data

    Full text link
    We present the results of a search for potential transit signals in the first three quarters of photometry data acquired by the Kepler Mission. The targets of the search include 151,722 stars which were observed over the full interval and an additional 19,132 stars which were observed for only 1 or 2 quarters. From this set of targets we find a total of 5,392 detections which meet the Kepler detection criteria: those criteria are periodicity of the signal, an acceptable signal-to-noise ratio, and a composition test which rejects spurious detections which contain non-physical combinations of events. The detected signals are dominated by events with relatively low signal-to-noise ratio and by events with relatively short periods. The distribution of estimated transit depths appears to peak in the range between 40 and 100 parts per million, with a few detections down to fewer than 10 parts per million. The detected signals are compared to a set of known transit events in the Kepler field of view which were derived by a different method using a longer data interval; the comparison shows that the current search correctly identified 88.1% of the known events. A tabulation of the detected transit signals, examples which illustrate the analysis and detection process, a discussion of future plans and open, potentially fruitful, areas of further research are included

    Fundamental Properties of Stars using Asteroseismology from Kepler & CoRoT and Interferometry from the CHARA Array

    Full text link
    We present results of a long-baseline interferometry campaign using the PAVO beam combiner at the CHARA Array to measure the angular sizes of five main-sequence stars, one subgiant and four red giant stars for which solar-like oscillations have been detected by either Kepler or CoRoT. By combining interferometric angular diameters, Hipparcos parallaxes, asteroseismic densities, bolometric fluxes and high-resolution spectroscopy we derive a full set of near model-independent fundamental properties for the sample. We first use these properties to test asteroseismic scaling relations for the frequency of maximum power (nu_max) and the large frequency separation (Delta_nu). We find excellent agreement within the observational uncertainties, and empirically show that simple estimates of asteroseismic radii for main-sequence stars are accurate to <~4%. We furthermore find good agreement of our measured effective temperatures with spectroscopic and photometric estimates with mean deviations for stars between T_eff = 4600-6200 K of -22+/-32 K (with a scatter of 97K) and -58+/-31 K (with a scatter of 93 K), respectively. Finally we present a first comparison with evolutionary models, and find differences between observed and theoretical properties for the metal-rich main-sequence star HD173701. We conclude that the constraints presented in this study will have strong potential for testing stellar model physics, in particular when combined with detailed modelling of individual oscillation frequencies.Comment: 18 pages, 12 figures, 7 tables; accepted for publication in Ap

    Probing the core structure and evolution of red giants using gravity-dominated mixed modes observed with Kepler

    Full text link
    We report for the first time a parametric fit to the pattern of the \ell = 1 mixed modes in red giants, which is a powerful tool to identify gravity-dominated mixed modes. With these modes, which share the characteristics of pressure and gravity modes, we are able to probe directly the helium core and the surrounding shell where hydrogen is burning. We propose two ways for describing the so-called mode bumping that affects the frequencies of the mixed modes. Firstly, a phenomenological approach is used to describe the main features of the mode bumping. Alternatively, a quasi-asymptotic mixed-mode relation provides a powerful link between seismic observations and the stellar interior structure. We used period \'echelle diagrams to emphasize the detection of the gravity-dominated mixed modes. The asymptotic relation for mixed modes is confirmed. It allows us to measure the gravity-mode period spacings in more than two hundred red giant stars. The identification of the gravity-dominated mixed modes allows us to complete the identification of all major peaks in a red giant oscillation spectrum, with significant consequences for the true identification of \ell = 3 modes, of \ell = 2 mixed modes, for the mode widths and amplitudes, and for the \ell = 1 rotational splittings. The accurate measurement of the gravity-mode period spacing provides an effective probe of the inner, g-mode cavity. The derived value of the coupling coefficient between the cavities is different for red giant branch and clump stars. This provides a probe of the hydrogen-shell burning region that surrounds the helium core. Core contraction as red giants ascend the red giant branch can be explored using the variation of the gravity-mode spacing as a function of the mean large separation.Comment: Accepted in A&
    corecore