13 research outputs found

    Опыт палинологических исследований в нефтяной геологии

    Get PDF
    The authors present the directions for palynological research: detailed (zonal) palynostratigraphy for clarifying the age and correlation of reservoirs; palynological facial analysis for reconstruct the position of the ancient coastline; determination of the degree of catagenesis of organic matter using the palynomorphs color index for assessing the oil and gas generation potential of terrigenous sediments of the Perm region.Авторы представили направления палинологических исследований: детальная (зональная) палиностратиграфия для уточнения возраста и корреляции продуктивных пластов; палинофациальный анализ для реконструкции положения древней береговой линии; определение степени катагенеза органического вещества по цветовому индексу палиноморф для оценки нефтегазогенерационного потенциала терригенных отложений территории Пермского края

    Lung memory T-cell response in mice following intranasal immunization with influenza vector expressing mycobacterial proteins

    Get PDF
    Improving specific prevention of tuberculosis continues to be a top priority in phthisiology. “Prime-boost” vaccination schemes aim to maintain adequate levels of specific immunity while forming long-term protection. They are based on sequential use of BCG vaccine and new vaccine candidates expressing protective mycobacterial proteins. The development of new tuberculosis prevention approaches requires an understanding of how the anti-tuberculosis immune response forms and which mechanisms provide TB protection. Since tuberculosis is an airborne infection, vaccine effectiveness largely depends on mucosal immunity based on the formation of long-lived, functionally-active memory T-lymphocytes in the respiratory tract. We have previously shown that the influenza vector expressing ESAT-6 and Ag85A mycobacterial proteins (Flu/ESAT-6_Ag85A) in vaccination scheme of intranasal boost immunization resulted in significant increase of BCG's protective effect according to key indicators aggregate data in experimental tuberculosis infection. The aim of this work was to study the effect of intranasal immunization with the Flu/ESAT-6_Ag85A influenza vector on the formation of antigen-specific central and effector memory T cells and the cytokine-producing activity of effector T cells (TEM) in BCG standard and “BCG prime — influenza vector boost” vaccination schemes in mice. Intranasal immunization with the influenza vector has been shown to increase the proportion of antigen-specific CD4+ central memory T cells (TCM) in the pool of activated lymphocytes of lung and spleen reaching significant differences from the BCG group in the percentage of spleen CD4+ TCM (p < 0.01). In contrast to BCG, vaccination with the studied vaccine candidate was accompanied by accumulation of highly differentiated CD8 effector cells in lung, the target organ during tuberculosis infection. Comparative evaluation of the cell-mediated, post-vaccine immune response after immunization with influenzavector-based vaccine candidate (intranasal/mucosal) or BCG vaccine (subcutaneous) showed advantages in the mucosal group: in formation of functionally active subpopulations of effector CD4 and CD8 T lymphocytes (CD44highCD62Llow) in lungs secreting IL-2 as well as polyfunctional cells capable of coproducing two cytokines (IFNγ/TNFα or IFNγ/IL-2) or three cytokines (IFNγ/TNFα/IL-2). Due to their more pronounced effector function, polyfunctional T-lymphocytes can be considered to be potential immunological markers of protective immunity in tuberculosis

    Changes in the antigenic and genetic structure of influenza viruses: analysis of surveillance data of influenza A and B in Russia in 2006-2013

    Get PDF
    The goal of this research project was to study the natural variability of human influenza A and B viruses based on the analysis of the population structure of influenza viruses, circulating in Russia in 2006-2013, in order to determine the direction of their genetic and antigenic drift by comparison to the WHO reference strains. Our results proved that during that period significant changes occurred in the genetic structure of influenza viruses, their phylogenetic affiliation, as well as their sensitivity to antiviral drugs. According to the surveillance data, the percentage of influenza A(H1N1) viruses among patients with influenza-like illness or acute respiratory infection gradually decreased from 42% of the total number of influenza viruses in 2006-2007 to 19% in 2008- 2009. Influenza A(H1N1) viruses are characterized by «silent» variability that manifests in the gradual accumulation of amino acid substitutions in the minor undetectable group of viruses.The share of influenza A(H3N2) viruses varied from 10% in the 1st post pandemic year to approx. 60% in 2008-2009 and 2011- 2012 epidemic seasons. All of the influenza A strains isolated during the last years of the period, covered in this study, were found to be susceptible to neuraminidase inhibitors and resistant to adamantane antivirals.Influenza B viruses of both Yamagata and Victoria lineages circulated in Russia in the period from 2006 to 2013. The vast majority of these influenza B viruses belonged to the Victoria lineage. Phylogenetic and antigenic analyses of influenza B viruses have demonstrated a gradual drift of Russian isolates from the reference strains. No changes leading to resistance to oseltamivir or zanamivir were found in influenza B strains isolated until 2013.The goal of this research project was to study the natural variability of human influenza A and B viruses based on the analysis of the population structure of influenza viruses, circulating in Russia in 2006-2013, in order to determine the direction of their genetic and antigenic drift by comparison to the WHO reference strains. Our results proved that during that period significant changes occurred in the genetic structure of influenza viruses, their phylogenetic affiliation, as well as their sensitivity to antiviral drugs. According to the surveillance data, the percentage of influenza A(H1N1) viruses among patients with influenza-like illness or acute respiratory infection gradually decreased from 42% of the total number of influenza viruses in 2006-2007 to 19% in 2008- 2009. Influenza A(H1N1) viruses are characterized by «silent» variability that manifests in the gradual accumulation of amino acid substitutions in the minor undetectable group of viruses. The share of influenza A(H3N2) viruses varied from 10% in the 1st post pandemic year to approx. 60% in 2008-2009 and 2011- 2012 epidemic seasons. All of the influenza A strains isolated during the last years of the period, covered in this study, were found to be susceptible to neuraminidase inhibitors and resistant to adamantane antivirals. Influenza B viruses of both Yamagata and Victoria lineages circulated in Russia in the period from 2006 to 2013. The vast majority of these influenza B viruses belonged to the Victoria lineage. Phylogenetic and antigenic analyses of influenza B viruses have demonstrated a gradual drift of Russian isolates from the reference strains. No changes leading to resistance to oseltamivir or zanamivir were found in influenza B strains isolated until 2013

    Induction of Protective CD4+ T Cell-Mediated Immunity by a Leishmania Peptide Delivered in Recombinant Influenza Viruses

    Get PDF
    The available evidence suggests that protective immunity to Leishmania is achieved by priming the CD4+ Th1 response. Therefore, we utilised a reverse genetics strategy to generate influenza A viruses to deliver an immunogenic Leishmania peptide. The single, immunodominant Leishmania-specific LACK158–173 CD4+ peptide was engineered into the neuraminidase stalk of H1N1 and H3N2 influenza A viruses. These recombinant viruses were used to vaccinate susceptible BALB/c mice to determine whether the resultant LACK158–173-specific CD4+ T cell responses protected against live L. major infection. We show that vaccination with influenza-LACK158–173 triggers LACK158–173-specific Th1-biased CD4+ T cell responses within an appropriate cytokine milieu (IFN-γ, IL-12), essential for the magnitude and quality of the Th1 response. A single intraperitoneal exposure (non-replicative route of immunisation) to recombinant influenza delivers immunogenic peptides, leading to a marked reduction (2–4 log) in parasite burden, albeit without reduction in lesion size. This correlated with increased numbers of IFN-γ-producing CD4+ T cells in vaccinated mice compared to controls. Importantly, the subsequent prime-boost approach with a serologically distinct strain of influenza (H1N1->H3N2) expressing LACK158–173 led to a marked reduction in both lesion size and parasite burdens in vaccination trials. This protection correlated with high levels of IFN-γ producing cells in the spleen, which were maintained for 6 weeks post-challenge indicating the longevity of this protective effector response. Thus, these experiments show that Leishmania-derived peptides delivered in the context of recombinant influenza viruses are immunogenic in vivo, and warrant investigation of similar vaccine strategies to generate parasite-specific immunity

    Simulating hydrology with an isotopic land surface model in western Siberia: what do we learn from water isotopes?

    No full text
    International audienceImprovements in the evaluation of land surface models would translate into more reliable predictions of future climate changes, as significant uncertainties persist in the quantification and representation of the relative contributions of soil and vegetation to the water and energy cycles. In this paper, we investigate the usefulness of water stable isotopes in land surface models studying land surface processes. To achieve this, we implemented 18O and 2H and the computation of the oxygen (δ18O) and deuterium (δD) stable isotope composition of soil and leaf water pools in a~recent version of the land surface model ORCHIDEE. We performed point-wise simulations with this new model and evaluated its performance on vertical profiles of soil water isotope ratios measured in summer 2012 at four experimental sites located in a boreal region of the Artic zone of western Siberia. The model performed relatively well in simulating some features of the δ18O soil profiles, but poorly reproduced the d-excess profiles, at all four stations. The response of the simulated δ18O profiles to variations in key hydrological parameters revealed the importance of the choice of a correct infiltration pathway in ORCHIDEE. Our results show also that the strength of the evaporative enrichment signal plays a role in shaping the profiles, too and, therefore, the relevance of the vegetation and bare soil characterization. We investigated furthermore to which extent we are able to determine the relative contribution of the evaporation to the evapotranspiration. This study's results confirm that the use of water stable isotopes measurements helps constrain the representation of key land surface processes in land surface models

    OMOLOGICAL AND HETEROLOGICAL ANTIBODY AND T CELL IMMUNE RESPONSES TO LIVE ATTENUATED INFLUENZA VACCINE A (H5N2) AND A (H7N3)

    No full text
    From the beginning of 21th century outbreaks of H5, H7 and H9 avian flu are registered from time to time. These viruses are considered as one of the possible causes of the next pandemia. The development of avian influenza vaccines is one of the WHO priorities. The aim of this work was to study antibody and cellular immune responses to avian A (H5N2) and A (H7N3) live attenuated influenza vaccines (LAIVs). We examined serum antibodies (HAI assay, microneutralization assay, ELISA), local antibodies (ELISA) and virus-specific CD4+ and CD8+ central memory and effector memory T cells. Two doses vaccination of healthy volunteers with A (H5N2) and A (H7N3) LAIVs induced homological antibody and cellular immune responses (i. e. serum and local antibody conversions, virus-specific memory T cell growth). These vaccines also stimulated heterological immunity (heterological serum and local antibodies and T cells). Heterological immune response intensity depended on antigenic structure of vaccine strain and heterological virus, particularly on HA type
    corecore