120 research outputs found

    Rural Community Longevity: Capitalizing on Diversity for Immigrant Residential Stability

    Get PDF
    The premise of this research is that rural immigrants comprise a significant source of untapped human and social capital necessary for community development. However, to capitalize on the growing ethnic diversity in rural America, immigrant newcomers must want to stay in their new rural communities. This investigation was designed to identify factors necessary to enhance rural Latino immigrants’ long-term residential stability. Thus, we sought to: (1) identify perceptions of rural residence, with particular attention to employment opportunities and challenges; (2) assess formal support availability and community issues of greatest concern to rural Latinas; and (3) identify strategies for creating bi-cultural communities. To achieve these goals, qualitative and quantitative data were collected from first-generation immigrant Latinas and their second-generation peers residing in five rural Nebraska communities. Recommendations for service and outreach are provided, as are suggestions for continued research and scholarship

    Monitoring Voltage-Dependent Charge Displacement of Shaker B-IR K+ Ion Channels Using Radio Frequency Interrogation

    Get PDF
    Here we introduce a new technique that probes voltage-dependent charge displacements of excitable membrane-bound proteins using extracellularly applied radio frequency (RF, 500 kHz) electric fields. Xenopus oocytes were used as a model cell for these experiments, and were injected with cRNA encoding Shaker B-IR (ShB-IR) K+ ion channels to express large densities of this protein in the oocyte membranes. Two-electrode voltage clamp (TEVC) was applied to command whole-cell membrane potential and to measure channel-dependent membrane currents. Simultaneously, RF electric fields were applied to perturb the membrane potential about the TEVC level and to measure voltage-dependent RF displacement currents. ShB-IR expressing oocytes showed significantly larger changes in RF displacement currents upon membrane depolarization than control oocytes. Voltage-dependent changes in RF displacement currents further increased in ShB-IR expressing oocytes after ∼120 µM Cu2+ addition to the external bath. Cu2+ is known to bind to the ShB-IR ion channel and inhibit Shaker K+ conductance, indicating that changes in the RF displacement current reported here were associated with RF vibration of the Cu2+-linked mobile domain of the ShB-IR protein. Results demonstrate the use of extracellular RF electrodes to interrogate voltage-dependent movement of charged mobile protein domains — capabilities that might enable detection of small changes in charge distribution associated with integral membrane protein conformation and/or drug–protein interactions

    Complex -Glycans Influence the Spatial Arrangement of Voltage Gated Potassium Channels in Membranes of Neuronal-Derived Cells

    Get PDF
    The intrinsic electrical properties of a neuron depend on expression of voltage gated potassium (Kv) channel isoforms, as well as their distribution and density in the plasma membrane. Recently, we showed that N-glycosylation site occupancy of Kv3.1b modulated its placement in the cell body and neurites of a neuronal-derived cell line, B35 neuroblastoma cells. To extrapolate this mechanism to other N-glycosylated Kv channels, we evaluated the impact of N-glycosylation occupancy of Kv3.1a and Kv1.1 channels. Western blots revealed that wild type Kv3.1a and Kv1.1 α-subunits had complex and oligomannose N-glycans, respectively, and that abolishment of the N-glycosylation site(s) generated Kv proteins without N-glycans. Total internal reflection fluorescence microscopy images revealed that N-glycans of Kv3.1a contributed to its placement in the cell membrane while N-glycans had no effect on the distribution of Kv1.1. Based on particle analysis of EGFP-Kv proteins in the adhered membrane, glycosylated forms of Kv3.1a, Kv1.1, and Kv3.1b had differences in the number, size or density of Kv protein clusters in the cell membrane of neurites and cell body of B35 cells. Differences were also observed between the unglycosylated forms of the Kv proteins. Cell dissociation assays revealed that cell-cell adhesion was increased by the presence of complex N-glycans of Kv3.1a, like Kv3.1b, whereas cell adhesion was similar in the oligomannose and unglycosylated Kv1.1 subunit containing B35 cells. Our findings provide direct evidence that N-glycans of Kv3.1 splice variants contribute to the placement of these glycoproteins in the plasma membrane of neuronal-derived cells while those of Kv1.1 were absent. Further when the cell membrane distribution of the Kv channel was modified by N-glycans then the cell-cell adhesion properties were altered. Our study demonstrates that N-glycosylation of Kv3.1a, like Kv3.1b, provides a mechanism for the distribution of these proteins to the cell body and outgrowths and thereby can generate different voltage-dependent conductances in these membranes

    Reduced conditioned fear response in mice that lack Dlx1 and show subtype-specific loss of interneurons

    Get PDF
    The inhibitory GABAergic system has been implicated in multiple neuropsychiatric diseases such as schizophrenia and autism. The Dlx homeobox transcription factor family is essential for development and function of GABAergic interneurons. Mice lacking the Dlx1 gene have postnatal subtype-specific loss of interneurons and reduced IPSCs in their cortex and hippocampus. To ascertain consequences of these changes in the GABAergic system, we performed a battery of behavioral assays on the Dlx1 mutant mice, including zero maze, open field, locomotor activity, food intake, rotarod, tail suspension, fear conditioning assays (context and trace), prepulse inhibition, and working memory related tasks (spontaneous alteration task and spatial working memory task). Dlx1 mutant mice displayed elevated activity levels in open field, locomotor activity, and tail suspension tests. These mice also showed deficits in contextual and trace fear conditioning, and possibly in prepulse inhibition. Their learning deficits were not global, as the mutant mice did not differ from the wild-type controls in tests of working memory. Our findings demonstrate a critical role for the Dlx1 gene, and likely the subclasses of interneurons that are affected by the lack of this gene, in behavioral inhibition and associative fear learning. These observations support the involvement of particular components of the GABAergic system in specific behavioral phenotypes related to complex neuropsychiatric diseases

    Treatment with a BH3 mimetic overcomes the resistance of latency III EBV (+) cells to p53-mediated apoptosis

    Get PDF
    P53 inactivation is often observed in Burkitt's lymphoma (BL) cells due to mutations in the p53 gene or overexpression of its negative regulator, murine double minute-2 (MDM2). This event is now considered an essential part of the oncogenic process. Epstein–Barr virus (EBV) is strongly associated with BL and is a cofactor in its development. We previously showed that nutlin-3, an antagonist of MDM2, activates the p53 pathway in BL cell lines harboring wild-type p53. However, nutlin-3 strongly induced apoptosis in EBV (−) or latency I EBV (+) cells, whereas latency III EBV (+) cells were much more resistant. We show here that this resistance to apoptosis is also observed in latency III EBV (+) lymphoblastoid cell lines. We also show that, in latency III EBV (+) cells, B-cell lymphona 2 (Bcl-2) is selectively overproduced and interacts with Bcl-2-associated X protein (Bax), preventing its activation. The treatment of these cells with the Bcl-2-homology domain 3 mimetic ABT-737 disrupts Bax/Bcl-2 interaction and allows Bax activation by nutlin-3. Furthermore, treatment with these two compounds strongly induces apoptosis. Thus, a combination of Mdm2 and Bcl-2 inhibitors might be a useful anti-cancer strategy for diseases linked to EBV infection

    Adenyl cyclases and cAMP in plant signaling - past and present

    Get PDF
    In lower eukaryotes and animals 3'-5'-cyclic adenosine monophosphate (cAMP) and adenyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, have long been established as key components and second messengers in many signaling pathways. In contrast, in plants, both the presence and biological role of cAMP have been a matter of ongoing debate and some controversy. Here we shall focus firstly on the discovery of cellular cAMP in plants and evidence for a role of this second messenger in plant signal transduction. Secondly, we shall review current evidence of plant ACs, analyse aspects of their domain organisations and the biological roles of candidate molecules. In addition, we shall assess different approaches based on search motifs consisting of functionally assigned amino acids in the catalytic centre of annotated and/or experimentally tested nucleotide cyclases that can contribute to the identification of novel candidate molecules with AC activity such as F-box and TIR proteins

    Updates on p53: modulation of p53 degradation as a therapeutic approach

    Get PDF
    The p53 pathway is aberrant in most human tumours with over 50% expressing mutant p53 proteins. The pathway is critically controlled by protein degradation. Here, we discuss the latest developments in the search for small molecules that can modulate p53 pathway protein stability and restore p53 activity for cancer therapy

    Predominant Functional Expression of Kv1.3 by Activated Microglia of the Hippocampus after Status epilepticus

    Get PDF
    BACKGROUND:Growing evidence indicates that the functional state of microglial cells differs according to the pathological conditions that trigger their activation. In particular, activated microglial cells can express sets of Kv subunits which sustain delayed rectifying potassium currents (Kdr) and modulate differently microglia proliferation and ability to release mediators. We recently reported that hippocampal microglia is in a particular activation state after a status epilepticus (SE) and the present study aimed at identifying which of the Kv channels are functionally expressed by microglia in this model. METHODOLOGY/PRINCIPAL FINDINGS:SE was induced by systemic injection of kainate in CX3CR1(eGFP/+) mice and whole cell recordings of fluorescent microglia were performed in acute hippocampal slices prepared 48 h after SE. Microglia expressed Kdr currents which were characterized by a potential of half-maximal activation near -25 mV, prominent steady-state and cumulative inactivations. Kdr currents were almost abolished by the broad spectrum antagonist 4-Aminopyridine (1 mM). In contrast, tetraethylammonium (TEA) at a concentration of 1 mM, known to block Kv3.1, Kv1.1 and 1.2 subunits, only weakly reduced Kdr currents. However, at a concentration of 5 mM which should also affect Kv1.3 and 1.6, TEA inhibited about 30% of the Kdr conductance. Alpha-dendrotoxin, which selectively inhibits Kv1.1, 1.2 and 1.6, reduced only weakly Kdr currents, indicating that channels formed by homomeric assemblies of these subunits are not important contributors of Kdr currents. Finally, agitoxin-2 and margatoxin strongly inhibited the current. CONCLUSIONS/SIGNIFICANCE:These results indicate that Kv1.3 containing channels predominantly determined Kdr currents in activated microglia after SE

    Activation of the p53 pathway by the MDM2 inhibitor nutlin-3a overcomes BCL2 overexpression in a preclinical model of diffuse large B-cell lymphoma associated with t(14;18)(q32;q21)

    Get PDF
    p53 is frequently wild type (wt) in diffuse large B-cell lymphoma (DLBCL) associated with t(14;18)(q32;q21) that overexpresses BCL2. Nutlin-3a is a small molecule that activates the p53 pathway by disrupting p53–MDM2 interaction. We show that nutlin-3a activates p53 in DLBCL cells associated with t(14;18)(q32;q21), BCL2 overexpression and wt p53, resulting in cell cycle arrest and apoptosis. Nutlin-3a treatment had similar effects on DLBCL cells of activated B-cell phenotype with wt p53. Cell cycle arrest was associated with upregulation of p21. Nutlin-3a-induced apoptosis was accompanied by BAX and PUMA upregulation, BCL-XL downregulation, serine-70 dephosphorylation of BCL2, direct binding of BCL2 by p53, caspase-9 upregulation and caspase-3 cleavage. Cell death was reduced when p53-dependent transactivation activity was inhibited by pifithrin-α (PFT-α), or PFT-μ inhibited direct p53 targeting of mitochondria. Nutlin-3a sensitized activation of the intrinsic apoptotic pathway by BCL2 inhibitors in t(14;18)-positive DLBCL cells with wt p53, and enhanced doxorubicin cytotoxicity against t(14;18)-positive DLBCL cells with wt or mutant p53, the latter in part via p73 upregulation. Nutlin-3a treatment in a xenograft animal lymphoma model inhibited growth of t(14;18)-positive DLBCL tumors, associated with increased apoptosis and decreased proliferation. These data suggest that disruption of the p53–MDM2 interaction by nutlin-3a offers a novel therapeutic approach for DLBCL associated with t(14;18)(q32;q21)

    Nutlin-3, the small-molecule inhibitor of MDM2, promotes senescence and radiosensitises laryngeal carcinoma cells harbouring wild-type p53

    Get PDF
    BACKGROUND: Primary radiotherapy (RT) is a mainstay of treatment for laryngeal squamous cell carcinoma (LSCC). Although the cure rates for early (T1) vocal cord tumours are high, RT proves ineffective in up to a third of T3 carcinomas. Moreover, RT is associated with debilitating early- and late-treatment-related toxicity, thus finding means to de-escalate therapy, while retaining/augmenting therapeutic effectiveness, is highly desirable. p53 is a key mediator of radiation responses; we therefore investigated whether Nutlin-3, a small-molecule inhibitor of MDM2 (mouse double minute 2; an essential negative regulator of p53), might radiosensitise LSCC cells. METHODS: We performed clonogenic assays to measure radiosensitivity in a panel of LSCC cell lines (for which we determined p53 mutational status) in the presence and absence of Nutlin-3. RESULTS: LSCC cells harbouring wild-type p53 were significantly radiosensitised by Nutlin-3 (P<0.0001; log-rank scale), and displayed increased cell cycle arrest and significantly increased senescence (P<0.001) in the absence of increased apoptosis; thus, our data suggest that senescence may mediate this increased radiosensitivity. CONCLUSION: This is the first study showing Nutlin-3 as an effective radiosensitiser in LSCC cells that retain wild-type p53. The clinical application of Nutlin-3 might improve local recurrence rates or allow treatment de-escalation in these patients
    corecore