18 research outputs found

    Induction of New Lactam Derivatives From the Endophytic Fungus Aplosporella javeedii Through an OSMAC Approach

    Get PDF
    Fermentation of the endophytic fungus Aplosporella javeedii on solid rice medium in presence of either 3.5% NaNO3 or 3.5% monosodium glutamate caused a significant change of the fungal metabolite pattern compared to fungal controls grown only on rice. Chemical investigation of the former fungal extracts yielded 11 new lactam derivatives, aplosporellins A–K (2–12), in addition to the known compound, pramanicin A (1). All of these compounds were not detected when the fungus was grown on rice medium without these activators thereby indicating the power of this OSMAC approach. The structures of the new compounds were elucidated by one- and two- dimensional NMR spectroscopy, DFT-NMR calculations and by mass spectrometry as well as by comparison with the literature whereas the absolute configuration of the lactam core was determined by TDDFT-ECD and OR calculations. Pramanicin A (1) showed strong cytotoxicity against human lymphoma (Ramos) and leukemia (Jurkat J16) cells with IC50 values of 4.7 and 4.4 mM, respectively. Mechanistic studies indicated that 1 activates caspase-3 and induces apoptotic cell death

    The mycotoxin phomoxanthone A disturbs the form and function of the inner mitochondrial membrane.

    Get PDF
    Mitochondria are cellular organelles with crucial functions in the generation and distribution of ATP, the buffering of cytosolic Ca2+ and the initiation of apoptosis. Compounds that interfere with these functions are termed mitochondrial toxins, many of which are derived from microbes, such as antimycin A, oligomycin A, and ionomycin. Here, we identify the mycotoxin phomoxanthone A (PXA), derived from the endophytic fungus Phomopsis longicolla, as a mitochondrial toxin. We show that PXA elicits a strong release of Ca2+ from the mitochondria but not from the ER. In addition, PXA depolarises the mitochondria similarly to protonophoric uncouplers such as CCCP, yet unlike these, it does not increase but rather inhibits cellular respiration and electron transport chain activity. The respiration-dependent mitochondrial network structure rapidly collapses into fragments upon PXA treatment. Surprisingly, this fragmentation is independent from the canonical mitochondrial fission and fusion mediators DRP1 and OPA1, and exclusively affects the inner mitochondrial membrane, leading to cristae disruption, release of pro-apoptotic proteins, and apoptosis. Taken together, our results suggest that PXA is a mitochondrial toxin with a novel mode of action that might prove a useful tool for the study of mitochondrial ion homoeostasis and membrane dynamics

    Natural Products Impacting DNA Methyltransferases and Histone Deacetylases.

    No full text
    Epigenetics refers to heritable changes in gene expression and chromatin structure without change in a DNA sequence. Several epigenetic modifications and respective regulators have been reported. These include DNA methylation, chromatin remodeling, histone post-translational modifications, and non-coding RNAs. Emerging evidence has revealed that epigenetic dysregulations are involved in a wide range of diseases including cancers. Therefore, the reversible nature of epigenetic modifications concerning activation or inhibition of enzymes involved could be promising targets and useful tools for the elucidation of cellular and biological phenomena. In this review, emphasis is laid on natural products that inhibit DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) making them promising candidates for the development of lead structures for anticancer-drugs targeting epigenetic modifications. However, most of the natural products targeting HDAC and/or DNMT lack isoform selectivity, which is important for determining their potential use as therapeutic agents. Nevertheless, the structures presented in this review offer the well-founded basis that screening and chemical modifications of natural products will in future provide not only leads to the identification of more specific inhibitors with fewer side effects, but also important features for the elucidation of HDAC and DNMT function with respect to cancer treatment

    First Results from a Screening of 300 Naturally Occurring Compounds: 4,6-dibromo-2-(2′,4′-dibromophenoxy)phenol, 4,5,6-tribromo-2-(2′,4′-dibromophenoxy)phenol, and 5-epi-nakijinone Q as Substances with the Potential for Anticancer Therapy

    No full text
    There is a variety of antineoplastic drugs that are based on natural compounds from ecological niches with high evolutionary pressure. We used two cell lines (Jurkat J16 and Ramos) in a screening to assess 300 different naturally occurring compounds with regard to their antineoplastic activity. The results of the compounds 4,6-dibromo-2-(2′,4′-dibromophenoxy)phenol (P01F03), 4,5,6-tribromo-2-(2′,4′-dibromophenoxy)phenol (P01F08), and 5-epi-nakijinone Q (P03F03) prompted us to perform further research. Using viability and apoptosis assays on the cell lines of primary human leukemic and normal hematopoietic cells, we found that P01F08 induced apoptosis in the cell lines at IC50 values between 1.61 and 2.95 μM after 72 h. IC50 values of peripheral blood mononuclear cells (PBMNCs) from healthy donors were higher, demonstrating that the cytotoxicity in the cell lines reached 50%, while normal PBMNCs were hardly affected. The colony-forming unit assay showed that the hematopoietic progenitor cells were not significantly affected in their growth by P01F08 at a concentration of 3 μM. P01F08 showed a 3.2-fold lower IC50 value in primary leukemic cells [acute myeloid leukemia (AML)] compared to the PBMNC of healthy donors. We could confirm the antineoplastic effect of 5-epi-nakijinone Q (P03F03) on the cell lines via the induction of apoptosis but noted a similarly strong cytotoxic effect on normal PBMNCs

    Cyclic Cystine-Bridged Peptides from the Marine Sponge Clathria basilana Induce Apoptosis in Tumor Cells and Depolarize the Bacterial Cytoplasmic Membrane

    No full text
    Investigation of the sponge Clathria basilana collected in Indonesia afforded five new peptides, including microcionamides C (1) and D (2), gombamides B (4), C (5), and D (6), and an unusual amide, (E)-2-amino-3-methyl-N-styrylbutanamide (7), along with 11 known compounds, among them microcionamide A (3). The structures of the new compounds were elucidated by one- and two-dimensional NMR spectroscopy as well as by high-resolution mass spectrometry. The absolute configurations of the constituent amino acid residues in 1–7 were determined by Marfey’s analysis. Microcionamides A, C, and D (1–3) showed in vitro cytotoxicity against lymphoma (Ramos) and leukemia cell lines (HL-60, Nomo-1, Jurkat J16), as well as against a human ovarian carcinoma cell line (A2780) with IC50 values ranging from 0.45 to 28 μM. Mechanistic studies showed that compounds 1–3 rapidly induce apoptotic cell death in Jurkat J16 and Ramos cells and that 1 and 2 potently block autophagy upon starvation conditions, thereby impairing pro-survival signaling of cancer cells. In addition, microcionamides C and A (1 and 3) inhibited bacterial growth of Staphylococcus aureus and Enterococcus faecium with minimal inhibitory concentrations between 6.2 and 12 μM. Mechanistic studies indicate dissipation of the bacterial membrane potential

    Fusaristatins D–F and (7S,8R)-(−)-chlamydospordiol from Fusarium sp. BZCB-CA, an endophyte of Bothriospermum chinense

    No full text
    Three new lipodepsipeptides, fusaristatins DeF ( 1e3) and a new a-pyrone derivative, (7S,8R)-()-chlamydospordiol (5), together with eight known compounds (4, 6e12) were obtained from solidrice cultures of Fusarium sp. BZCB-CA, an endophyte of the Chinese medicinal plant, Bothriospermumchinense. The planar structures of the new metabolites (1e3, 5) were established by spectroscopictechniques (1D/2D NMR and HRESIMS). Marfey’s method was applied to determine the absoluteconfiguration of 1, while the absolute configuration of 5 was determined by single-crystal X-ray crys-tallography analysis in addition to Mosher’s method. Crystallographic data of inflatin C (7) are alsosupplied here for the first time. In cytotoxicity assays, rubrofusarin (8) showed a moderate effect on thelymphoma cell lines L5178Y, Ramos and Jurkat, with IC50 values of 7.7, 6.2 and 6.3 mM, respectively, whilethe remaining compounds were inactive. When subjected to antibacterial assay, only lateropyrone (9)exhibited good to weak activity against a panel of Gram-positive bacteria including drug-resistant strainswith MICs ranging from 3.1 to 25 mM
    corecore