704 research outputs found

    Physics Beyond the Standard Model and Cosmological Connections: A Summary from LCWS 06

    Get PDF
    The International Linear Collider (ILC) is likely to provide us important insights into the sector of physics that may supersede our current paradigm viz., the Standard Model. In anticipation of the possibility that the ILC may come up in the middle of the next decade, several groups are vigourously investigating its potential to explore this new sector of physics. The Linear Collider Workshop in Bangalore (LCWS06) had several presentations of such studies which looked at supersymmetry, extra dimensions and other exotic possibilities which the ILC may help us discover or understand. Some papers also looked at the understanding of cosmology that may emerge from studies at the ILC. This paper summarises these presentations.Comment: 8 pages (including cover page) LaTeX, Summary talk presented at the International Linear Collider Workshop in Bangalore, India in March 200

    Physics at International Linear Collider (ILC)

    Full text link
    International Linear Collider (ILC) is an electron-positron collider with the initial center-of-mass energy of 500 GeV which is upgradable to about 1 TeV later on. Its goal is to study the physics at TeV scale with unprecedented high sensitivities. The main topics include precision measurements of the Higgs particle properties, studies of supersymmtric particles and the underlying theoretical structure if supersymmetry turns out to be realized in nature, probing alternative possibilities for the origin of mass, and the cosmological connections thereof. In many channels, Higgs and leptonic sector in particular, ILC is substantially more sensitive than LHC, and is complementary to LHC overall. In this short article, we will have a quick look at the capabilities of ILC.Comment: To appear in JPSJ Vol76 No1

    GAD Antibody Positivity Predicts Type 2 Diabetes in an Adult Population

    Get PDF
    OBJECTIVE-To evaluate the significance of GAD antibodies (GADAs) and family history for type 1 diabetes (FHT1) or type 2 diabetes (FHT2) in nondiabetic subjects. RESEARCH DESIGN AND METHODS-GADAs were analyzed in 4,976 nondiabetic relatives of type 2 diabetic patients or control subjects from Finland. Altogether, 289 (5.9%) were GADA(+)-a total of 253 GADA(+) and 2,511 GADA(-) subjects participated in repeated oral glucose tolerance tests during a median time of 8.1 years. The risk of progression to diabetes was assessed using Cox regression analysis. RESULTS-Subjects within the highest quartile of GADA(+) (GADA(high)(+)) had more often first-degree FHT1 (29.2 vs. 7.9%, P < 0.00001) and GADA(+) type 2 diabetic (21.3 vs. 13.7%, P = 0.002) or nondiabetic (26.4 vs. 13.3%, P = 0.010) relatives than GADA(-) subjects. During the follow-up, the GADA(+) subjects developed diabetes significantly more often than the GADA(-) subjects (36/253 [14.2%] vs. 134/2,511 [5.3%], P < 0.00001). GADA(high)(+) conferred a 4.9-fold increased risk of diabetes (95% CI 2.8-8.5) compared with GADA(-)-seroconversion to positive during the follow-up was associated with 6.5-fold (2.8-15.2) and first-degree FHT1 with 2.2-fold (1.2-4.1) risk of diabetes. Only three subjects developed type 1 diabetes, and others had a non-insulin-dependent phenotype 1 year after diagnosis. GADA(+) and GADA(-) subjects did not clinically differ at baseline, but they were leaner and less insulin resistant after the diagnosis of diabetes. CONCLUSIONS-GADA positivity clusters in families with type 1 diabetes or latent autoimmune diabetes in adults. GADA positivity predicts diabetes independently of family history of diabetes, and this risk was further increased with high GADA concentrations

    Measurement of the Gluino Mass via Cascade Decays for SPS 1a

    Full text link
    If R-parity conserving supersymmetry is realised with masses below the TeV scale, sparticles will be produced and decay in cascades at the LHC. In the case of a neutral LSP, which will not be detected, decay chains cannot be fully reconstructed, complicating the mass determination of the new particles. In this paper we extend the method of obtaining masses from kinematical endpoints to include a gluino at the head of a five-sparticle decay chain. This represents a non-trivial extension of the corresponding method for the squark decay chain. We calculate the endpoints of the new distributions and assess their applicability by examining the theoretical distributions for a variety of mass scenarios. The precision with which the gluino mass can be determined by this method is investigated for the mSUGRA point SPS 1a. Finally we estimate the improvement obtained from adding a Linear Collider measurement of the LSP mass.Comment: 40 pages; extended discussion of error

    Non-universal gauge boson ZZ' and the spin correlation of top quark pair production at ee+e^{-}e^{+} colliders

    Get PDF
    In the off-diagonal basis, we discuss the contributions of the non-universal gauge boson ZZ' predicted by the topcolor-assisted technicolor (TC2TC2) model to the spin configurations and the spin correlation observable of the top quark pair production via the process ee+ttˉe^{-}e^{+}\to t\bar{t}. Our numerical results show that the production cross sections for the like-spin states, which vanish in the standard model, can be significantly large as MZSM_{Z'}\approx \sqrt{S}. With reasonable values of the ZZ' mass MZM_{Z'} and the coupling parameter k1k_{1}, ZZ' exchange can generate large corrections to the spin correlation observable.Comment: 16 pages, 5 figure

    Using Tau Polarization to Discriminate between SUSY Models and Determine SUSY Parameters at ILC

    Get PDF
    In many SUSY models the first SUSY signal in the proposed International Linear Collider is expected to come from the pair production of τ~1\tilde\tau_1, followed by its decay into τ\tau+LSP. We study a simple and robust method of measuring the polarization of this τ\tau in its 1-prong hadronic decay channel,and show how it can be used to discriminate between SUSY models and to determine SUSY parameters.Comment: 9 pages, 5 figures, minor corrections; version published in Phys. Lett.

    l W nu production at CLIC: a window to TeV scale non-decoupled neutrinos

    Full text link
    We discuss single heavy neutrino production e+ e- -> N nu -> l W nu, l = e, mu, tau, at a future high energy collider like CLIC, with a centre of mass energy of 3 TeV. This process could allow to detect heavy neutrinos with masses of 1-2 TeV if their coupling to the electron V_eN is in the range 0.004-0.01. We study the dependence of the limits on the heavy neutrino mass and emphasise the crucial role of lepton flavour in the discovery of a positive signal at CLIC energy. We present strategies to determine heavy neutrino properties once they are discovered, namely their Dirac or Majorana character and the size and chirality of their charged current couplings. Conversely, if no signal is found, the bound V_eN < 0.002-0.006 would be set for masses of 1-2 TeV, improving the present limit up to a factor of 30. We also extend previous work examining in detail the flavour and mass dependence of the corresponding limits at ILC, as well as the determination of heavy neutrino properties if they are discovered at this collider.Comment: LaTeX 32 pages. Added comments and references. Matches version to appear in JHE

    Difficult Scenarios for NMSSM Higgs Discovery at the LHC

    Full text link
    We identify scenarios not ruled out by LEP data in which NMSSM Higgs detection at the LHC will be particularly challenging. We first review the `no-lose' theorem for Higgs discovery at the LHC that applies if Higgs bosons do not decay to other Higgs bosons - namely, with L=300 fb^-1, there is always one or more `standard' Higgs detection channel with at least a 5 sigma signal. However, we provide examples of no-Higgs-to-Higgs cases for which all the standard signals are no larger than 7 sigma implying that if the available L is smaller or the simulations performed by ATLAS and CMS turn out to be overly optimistic, all standard Higgs signals could fall below 5 sigma even in the no-Higgs-to-Higgs part of NMSSM parameter space. In the vast bulk of NMSSM parameter space, there will be Higgs-to-Higgs decays. We show that when such decays are present it is possible for all the standard detection channels to have very small significance. In most such cases, the only strongly produced Higgs boson is one with fairly SM-like couplings that decays to two lighter Higgs bosons (either a pair of the lightest CP-even Higgs bosons, or, in the largest part of parameter space, a pair of the lightest CP-odd Higgs bosons). A number of representative bench-mark scenarios of this type are delineated in detail and implications for Higgs discovery at various colliders are discussed.Comment: 31 pages, 5 figure

    Determination of the Higgs-boson couplings and H-A mixing in the generalized SM-like Two Higgs Doublet Model

    Full text link
    The feasibility of measuring the Higgs-boson properties at the Photon Collider at TESLA has been studied in detail for masses between 200 and 350 GeV, using realistic luminosity spectra and detector simulation. We consider the Two Higgs Doublet Model (II) with SM-like Yukawa couplings for h, parametrized by only one parameter (tan(beta)). The combined measurement of the invariant-mass distributions in the ZZ and W+W- decay-channels is sensitive to both the two-photon width Gamma_{gamma gamma} and phase Phi_{gamma gamma}. From the analysis including systematic uncertainties we found out that after one year of Photon Collider running with nominal luminosity the expected precision in the measurement of tan(beta) is of the order of 10%, for both light (h) and heavy (H) scalar Higgs bosons. The H-A mixing angle Phi_{HA}, characterizing a weak CP violation in the model with two Higgs doublets, can be determined to about 100 mrad, for low tan(beta).Comment: 17 pages, 9 figures; published versio

    Higgs production in association with top quark pair at e+e- colliders in theories of higher dimensional gravity

    Full text link
    The models of large extra compact dimensions, as suggested by Arkani-Hamed, Dimopoulos and Dvali, predict exciting phenomenological consequences with gravitational interactions becoming strong at the TeV scale. Such theories can be tested at the existing and future colliders. In this paper, we study the contribution of virtual Kaluza-Klein excitations in the process e+ettˉHe^+e^- \to t \bar t H at future linear collider (NLC). We find that the virtual exchange KK gravitons can modify the cross-section σ(e+ettˉH)\sigma(e^+e^- \to t \bar t H) significantly from its Standard Model value and will allow the effective string scale to be probed up to 7.9 TeV.Comment: 10 pages, Latex, 4 postscript figure
    corecore