333 research outputs found

    Outcome in recurrent head neck cancer treated with salvage-IMRT

    Get PDF
    BACKGROUND: Recurrent head neck cancer (rHNC) is a known unfavourable prognostic condition. The purpose of this work was to analyse our rHNC subgroup treated with salvage-intensity modulated radiation therapy (IMRT) for curable recurrence after initial surgery alone. Patients Between 4/2003-9/2008, 44 patients with squamous cell rHNC were referred for IMRT, mean/median 33/21 (3-144) months after initial surgery. None had prior head neck radiation. 41% underwent definitive, 59% postoperative IMRT (66-72.6Gy). 70% had simultaneous chemotherapy. METHODS: Retrospective analysis of the outcome following salvage IMRT in rHNC patients was performed. RESULTS: After mean/median 25/21 months (3-67), 22/44 (50%) patients were alive with no disease; 4 (9%) were alive with disease. 18 patients (41%) died of disease. Kaplan Meier 2-year disease specific survival (DSS), disease free survival (DFS), local and nodal control rates of the cohort were 59/49/56 and 68%, respectively. Known risk factors (advanced initial pTN, marginal initial resection, multiple recurrences) showed no significant outcome differences. Risk factors and the presence of macroscopic recurrence gross tumor volume (rGTV) in oral cavity patients vs others resulted in statistically significantly lower DSS (30 vs 70% at 2 years, p=0.03). With respect to the assessed unfavourable outcome following salvage treatment, numbers needed to treat to avoid one recurrence with initial postoperative IMRT have, in addition, been calculated. CONCLUSION: A low salvage rate of only ~50% at 2 years was found. Calculated numbers of patients needed to treat with postoperative radiation after initial surgery, in order to avoid recurrence and tumor-specific death, suggest a rather generous use of adjuvant irradiation, usually with simultaneous chemotherapy

    Positive selection during the evolution of the blood coagulation factors in the context of their disease-causing mutations

    Get PDF
    Blood coagulation occurs through a cascade of enzymes and cofactors that produces a fibrin clot, while otherwise maintaining haemostasis. The 11 human coagulation factors (FG, FII-FXIII) have been identified across all vertebrates, suggesting that they emerged with the first vertebrates around 500 Mya. Human FVIII, FIX and FXI are associated with thousands of disease-causing mutations. Here we evaluated the strength of selective pressures on the 14 genes coding for the 11 factors during vertebrate evolution, and compared these with human mutations in FVIII, FIX and FXI. Positive selection was identified for fibrinogen (FG), FIII, FVIII, FIX and FX in the mammalian Primates and Laurasiatheria and the Sauropsida (reptiles and birds). This showed that the coagulation system in vertebrates was under strong selective pressures, perhaps to adapt against blood-invading pathogens. The comparison of these results with disease-causing mutations reported in FVIII, FIX and FXI showed that the number of disease-causing mutations and the probability of positive selection were inversely related to each other. It was concluded that when a site was under positive selection, it was less likely to be associated with disease-causing mutations. In contrast, sites under negative selection were more likely to be associated with disease-causing mutations and be destabilizing. A residue-by-residue comparison of the FVIII, FIX and FXI sequence alignments confirmed this. This improved understanding of evolutionary changes in FVIII, FIX and FXI provided greater insight into disease-causing mutations, and better assessments of the codon sites that may be mutated in applications of gene therapy

    Gene3D: Multi-domain annotations for protein sequence and comparative genome analysis

    Get PDF
    Gene3D (http://gene3d.biochem.ucl.ac.uk) is a database of protein domain structure annotations for protein sequences. Domains are predicted using a library of profile HMMs from 2738 CATH superfamilies. Gene3D assigns domain annotations to Ensembl and UniProt sequence sets including >6000 cellular genomes and >20 million unique protein sequences. This represents an increase of 45% in the number of protein sequences since our last publication. Thanks to improvements in the underlying data and pipeline, we see large increases in the domain coverage of sequences. We have expanded this coverage by integrating Pfam and SUPERFAMILY domain annotations, and we now resolve domain overlaps to provide highly comprehensive composite multi-domain architectures. To make these data more accessible for comparative genome analyses, we have developed novel search algorithms for searching genomes to identify related multi-domain architectures. In addition to providing domain family annotations, we have now developed a pipeline for 3D homology modelling of domains in Gene3D. This has been applied to the human genome and will be rolled out to other major organisms over the next year

    ACE2 gene expression is up-regulated in the human failing heart

    Get PDF
    BACKGROUND: ACE2 is a novel homologue of angiotensin converting enzyme (ACE). ACE2 is highly expressed in human heart and animal data suggest that ACE2 is an essential regulator of cardiac function in vivo. Since overactivity of the renin-angiotensin system contributes to the progression of heart failure, this investigation assessed changes in gene expression of ACE2, ACE, AT(1 )receptor and renin in the human failing heart. METHODS: The sensitive technique of quantitative reverse transcriptase polymerase chain reaction was used to determine the level of mRNA expression of ACE and ACE2 in human ventricular myocardium from donors with non-diseased hearts (n = 9), idiopathic dilated cardiomyopathy (IDC, n = 11) and ischemic cardiomyopathy (ICM, n = 12). Following logarithmic transformation of the data, a one-way analysis of variance was performed for each target gene followed by a Dunnett's test to compare the two disease groups IDC and ICM versus control. RESULTS: As anticipated, ACE mRNA was found to be significantly increased in the failing heart with a 3.1 and 2.4-fold up-regulation found in IDC and ICM relative to non-diseased myocardium. Expression of ACE2 mRNA was also significantly up-regulated in IDC (2.4-fold increase) and ICM (1.8-fold increase) versus non-diseased myocardium. No change in angiotensin AT(1 )receptor mRNA expression was found in failing myocardium and renin mRNA was not detected. CONCLUSIONS: These data suggest that ACE2 is up-regulated in human IDC and ICM and are consistent with the hypothesis that differential regulation of this enzyme may have important functional consequences in heart failure. This strengthens the hypothesis that ACE2 may be a relevant target for the treatment of heart failure and will hopefully spur further studies to clarify the functional effects in human myocardium of ACE2 derived peptides

    Resolving the Ortholog Conjecture: Orthologs Tend to Be Weakly, but Significantly, More Similar in Function than Paralogs

    Get PDF
    The function of most proteins is not determined experimentally, but is extrapolated from homologs. According to the “ortholog conjecture”, or standard model of phylogenomics, protein function changes rapidly after duplication, leading to paralogs with different functions, while orthologs retain the ancestral function. We report here that a comparison of experimentally supported functional annotations among homologs from 13 genomes mostly supports this model. We show that to analyze GO annotation effectively, several confounding factors need to be controlled: authorship bias, variation of GO term frequency among species, variation of background similarity among species pairs, and propagated annotation bias. After controlling for these biases, we observe that orthologs have generally more similar functional annotations than paralogs. This is especially strong for sub-cellular localization. We observe only a weak decrease in functional similarity with increasing sequence divergence. These findings hold over a large diversity of species; notably orthologs from model organisms such as E. coli, yeast or mouse have conserved function with human proteins

    On the Use of Gene Ontology Annotations to Assess Functional Similarity among Orthologs and Paralogs: A Short Report

    Get PDF
    A recent paper (Nehrt et al., PLoS Comput. Biol. 7:e1002073, 2011) has proposed a metric for the “functional similarity” between two genes that uses only the Gene Ontology (GO) annotations directly derived from published experimental results. Applying this metric, the authors concluded that paralogous genes within the mouse genome or the human genome are more functionally similar on average than orthologous genes between these genomes, an unexpected result with broad implications if true. We suggest, based on both theoretical and empirical considerations, that this proposed metric should not be interpreted as a functional similarity, and therefore cannot be used to support any conclusions about the “ortholog conjecture” (or, more properly, the “ortholog functional conservation hypothesis”). First, we reexamine the case studies presented by Nehrt et al. as examples of orthologs with divergent functions, and come to a very different conclusion: they actually exemplify how GO annotations for orthologous genes provide complementary information about conserved biological functions. We then show that there is a global ascertainment bias in the experiment-based GO annotations for human and mouse genes: particular types of experiments tend to be performed in different model organisms. We conclude that the reported statistical differences in annotations between pairs of orthologous genes do not reflect differences in biological function, but rather complementarity in experimental approaches. Our results underscore two general considerations for researchers proposing novel types of analysis based on the GO: 1) that GO annotations are often incomplete, potentially in a biased manner, and subject to an “open world assumption” (absence of an annotation does not imply absence of a function), and 2) that conclusions drawn from a novel, large-scale GO analysis should whenever possible be supported by careful, in-depth examination of examples, to help ensure the conclusions have a justifiable biological basis

    Testing the Ortholog Conjecture with Comparative Functional Genomic Data from Mammals

    Get PDF
    A common assumption in comparative genomics is that orthologous genes share greater functional similarity than do paralogous genes (the “ortholog conjecture”). Many methods used to computationally predict protein function are based on this assumption, even though it is largely untested. Here we present the first large-scale test of the ortholog conjecture using comparative functional genomic data from human and mouse. We use the experimentally derived functions of more than 8,900 genes, as well as an independent microarray dataset, to directly assess our ability to predict function using both orthologs and paralogs. Both datasets show that paralogs are often a much better predictor of function than are orthologs, even at lower sequence identities. Among paralogs, those found within the same species are consistently more functionally similar than those found in a different species. We also find that paralogous pairs residing on the same chromosome are more functionally similar than those on different chromosomes, perhaps due to higher levels of interlocus gene conversion between these pairs. In addition to offering implications for the computational prediction of protein function, our results shed light on the relationship between sequence divergence and functional divergence. We conclude that the most important factor in the evolution of function is not amino acid sequence, but rather the cellular context in which proteins act

    Surgical treatment of gingival overgrowth with 10 years of follow-up

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In some pathological conditions, gingivitis caused by plaque accumulation can be more severe, with the result of an overgrowth. Nevertheless, the overgrowth involves the gingival margin with extension to the inter-dental papilla. The lesion may involve the inter-proximal spaces, and become so extensive that the teeth are displaced and their crowns covered. Severe overgrowth may lead to impairment in aesthetic and masticatory functions, requiring surgical excision of the excessive tissue. Aim of this study is to describe an operative protocol for the surgical treatment of localized gingival overgrowth analyzing the surgical technique, times and follow-up.</p> <p>Methods</p> <p>A total of 20 patients were enrolled and underwent initial, non surgical, periodontal treatment and training sessions on home oral hygiene training. The treatment plan involved radical exeresis of the mass followed by positioning of an autograft of connective tissue and keratinized gingiva.</p> <p>Results</p> <p>During 10 years of follow-up, all the grafts appeared well vascularized, aesthetically satisfactory, and without relapse.</p> <p>Conclusions</p> <p>Periodontal examinations, surgical procedures, and dental hygiene with follow-up are an essential part of the treatment protocol. However, additional effort is needed from the patient. Hopefully, the final treatment result makes it all worthwhile.</p

    Toward visualization of nanomachines in their native cellular environment

    Get PDF
    The cellular nanocosm is made up of numerous types of macromolecular complexes or biological nanomachines. These form functional modules that are organized into complex subcellular networks. Information on the ultra-structure of these nanomachines has mainly been obtained by analyzing isolated structures, using imaging techniques such as X-ray crystallography, NMR, or single particle electron microscopy (EM). Yet there is a strong need to image biological complexes in a native state and within a cellular environment, in order to gain a better understanding of their functions. Emerging methods in EM are now making this goal reachable. Cryo-electron tomography bypasses the need for conventional fixatives, dehydration and stains, so that a close-to-native environment is retained. As this technique is approaching macromolecular resolution, it is possible to create maps of individual macromolecular complexes. X-ray and NMR data can be ‘docked’ or fitted into the lower resolution particle density maps to create a macromolecular atlas of the cell under normal and pathological conditions. The majority of cells, however, are too thick to be imaged in an intact state and therefore methods such as ‘high pressure freezing’ with ‘freeze-substitution followed by room temperature plastic sectioning’ or ‘cryo-sectioning of unperturbed vitreous fully hydrated samples’ have been introduced for electron tomography. Here, we review methodological considerations for visualizing nanomachines in a close-to-physiological, cellular context. EM is in a renaissance, and further innovations and training in this field should be fully supported

    Phylostratigraphic tracking of cancer genes suggests a link to the emergence of multicellularity in metazoa

    Get PDF
    Background: Phylostratigraphy is a method used to correlate the evolutionary origin of founder genes (that is, functional founder protein domains) of gene families with particular macroevolutionary transitions. It is based on a model of genome evolution that suggests that the origin of complex phenotypic innovations will be accompanied by the emergence of such founder genes, the descendants of which can still be traced in extant organisms. The origin of multicellularity can be considered to be a macroevolutionary transition, for which new gene functions would have been required. Cancer should be tightly connected to multicellular life since it can be viewed as a malfunction of interaction between cells in a multicellular organism. A phylostratigraphic tracking of the origin of cancer genes should, therefore, also provide insights into the origin of multicellularity. Results: We find two strong peaks of the emergence of cancer related protein domains, one at the time of the origin of the first cell and the other around the time of the evolution of the multicellular metazoan organisms. These peaks correlate with two major classes of cancer genes, the 'caretakers', which are involved in general functions that support genome stability and the 'gatekeepers', which are involved in cellular signalling and growth processes. Interestingly, this phylogenetic succession mirrors the ontogenetic succession of tumour progression, where mutations in caretakers are thought to precede mutations in gatekeepers. Conclusions: A link between multicellularity and formation of cancer has often been predicted. However, this has not so far been explicitly tested. Although we find that a significant number of protein domains involved in cancer predate the origin of multicellularity, the second peak of cancer protein domain emergence is, indeed, connected to a phylogenetic level where multicellular animals have emerged. The fact that we can find a strong and consistent signal for this second peak in the phylostratigraphic map implies that a complex multi-level selection process has driven the transition to multicellularity
    • 

    corecore