52 research outputs found

    Trans-species transfer of Wolbachia: microinjection of Wolbachia from Litomosoides sigmodontis into Acanthocheilonema viteae

    Get PDF
    This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Intracellular bacteria of the genus Wolbachia are found in most filarial nematodes, but are lacking in some species like Acanthocheilonema viteae. Due to their symbiotic nature and their role in the pathology of filarial infections they are considered to be potential targets for intervention against filarial infections in man. Infection of A. viteae (a species which does not naturally carry Wolbachia) with Wolbachia bacteria could allow comparative studies on the effect of the endobacterium on the parasite and on the host's immune systems. As a step towards such studies we microinjected adult female A. viteae with Wolbachia obtained from Litomosoides sigmodontis. The bacteria were isolated from L. sigmodontis by density-gradient centrifugation, microinjected into A. viteae worms and bacterial DNA detected by PCR with Wolbachia specific primers (ftsZ gene). Microinjected worms were cultured in vitro, and 81% survived for 10 days. Implantation of microinjected worms into Meriones unguiculatus, the rodent host of A. viteae resulted in 38% survival. The DNA of the microinjected worms recovered from jirds 8 weeks after implantation contained Wolbachia DNA as shown by PCR, suggesting that Wolbachia of L. sigmodontis can be horizontally transmitted to A. viteae.Peer Reviewe

    Combined genotyping, microbial diversity and metabolite profiling studies on farmed Mytilus spp. from Kiel Fjord

    Get PDF
    The blue mussel Mytilus is a popular food source with high economical value. Species of the M. edulis complex (M. edulis, M. galloprovincialis and M. trossulus) hybridise whenever their geographic ranges overlap posing difficulties to species discrimination, which is important for blue mussel aquaculture. The aim of this study was to determine the genetic structure of farmed blue mussels in Kiel Fjord. Microbial and metabolic profile patterns were studied to investigate a possible dependency on the genotype of the bivalves. Genotyping confirmed the complex genetic structure of the Baltic Sea hybrid zone and revealed an unexpected dominance of M. trossulus alleles being in contrast to the predominance of M. edulis alleles described for wild Baltic blue mussels. Culture-dependent and -independent microbial community analyses indicated the presence of a diverse Mytilus-associated microbiota, while an LC-MS/MS-based metabolome study identified 76 major compounds dominated by pigments, alkaloids and polyketides in the whole tissue extracts. Analysis of mussel microbiota and metabolome did not indicate genotypic dependence, but demonstrated high intraspecific variability of farmed mussel individuals. We hypothesise that individual differences in microbial and metabolite patterns may be caused by high individual plasticity and might be enhanced by e.g. nutritional condition, age and gender

    A strategy for the conservation of biodiversity on mid-ocean ridges from deep-sea mining

    Get PDF
    Mineral exploitation has spread from land to shallow coastal waters and is now planned for the offshore, deep seabed. Large seafloor areas are being approved for exploration for seafloor mineral deposits, creating an urgent need for regional environmental management plans. Networks of areas where mining and mining impacts are prohibited are key elements of these plans. We adapt marine reserve design principles to the distinctive biophysical environment of mid-ocean ridges, offer a framework for design and evaluation of these networks to support conservation of benthic ecosystems on mid-ocean ridges, and introduce projected climate-induced changes in the deep sea to the evaluation of reserve design. We enumerate a suite of metrics to measure network performance against conservation targets and network design criteria promulgated by the Convention on Biological Diversity. We apply these metrics to network scenarios on the northern and equatorial Mid-Atlantic Ridge, where contractors are exploring for seafloor massive sulfide (SMS) deposits. A latitudinally distributed network of areas performs well at (i) capturing ecologically important areas and 30 to 50% of the spreading ridge areas, (ii) replicating representative areas, (iii) maintaining along-ridge population connectivity, and (iv) protecting areas potentially less affected by climate-related changes. Critically, the network design is adaptive, allowing for refinement based on new knowledge and the location of mining sites, provided that design principles and conservation targets are maintained. This framework can be applied along the global mid-ocean ridge system as a precautionary measure to protect biodiversity and ecosystem function from impacts of SMS mining

    Where are you from, stranger? The enigmatic biogeography of North African pond turtles (Emys orbicularis) .

    Get PDF
    Abstract The European pond turtle (Emys orbicularis) is a Nearctic element in the African fauna and thought to have invaded North Africa from the Iberian Peninsula. All North African populations are currently identified with the subspecies E. o. occidentalis. However, a nearly range-wide sampling in North Africa used for analyses of mitochondrial and microsatellite DNA provides evidence that only Moroccan populations belong to this taxon, while eastern Algerian and Tunisian pond turtles represent an undescribed distinct subspecies. These two taxa are most closely related to E. o. galloitalica with a native distribution along the Mediterranean coast of northern Spain through southern France to western and southern Italy. This group is sister to a clade comprising several mitochondrial lineages and subspecies of E. orbicularis from Central and Eastern Europe plus Asia, and the successive sisters are E. o. hellenica and E. trinacris. Our results suggest that E. orbicularis has been present in North Africa longer than on the Iberian Peninsula and that after an initial invasion of North Africa by pond turtles from an unknown European source region, there was a phase of diversification in North Africa, followed by a later re-invasion of Europe by one of the African lineages. The differentiation of pond turtles in North Africa parallels a general phylogeographic paradigm in amphibians and reptiles, with deeply divergent lineages in the western and eastern Maghreb. Acknowledging their genetic similarity, we propose to synonymize the previously recognized Iberian subspecies E. o. fritzjuergenobsti with E. o. occidentalis sensu stricto. The seriously imperiled Moroccan populations of E. o. occidentalis represent two Management Units different in mitochondrial haplotypes and microsatellite markers. The conservation status of eastern Algerian pond turtles is unclear, while Tunisian populations are endangered. Considering that Algerian and Tunisian pond turtles represent an endemic taxon, their situation throughout the historical range should be surveyed to establish a basis for conservation measures

    JZS_632 335..339

    No full text
    Identity of Pelodiscus sinensis revealed by DNA sequences of an approximately 180-year-old type specimen and a taxonomic reappraisal of Pelodiscus species (Testudines: Trionychidae) Heiko Stuckas and Uwe Fritz Abstract Recent studies identified several distinct genetic lineages within the softshell turtle genus Pelodiscus that could represent valid species. Traditionally, Pelodiscus was regarded to comprise only a single species (P. sinensis). These softshell turtles are economically the most important chelonians of the world, with hundreds of millions of specimens traded as food every year. Moreover, Pelodiscus is used as a model organism for embryological and physiological studies, making correct species identification of paramount interest for disciplines beyond taxonomy. However, the understanding of the diversity of Pelodiscus was seriously hampered by the unclear taxonomic allocation of the oldest available species name, Trionyx (Aspidonectes) sinensis Wiegmann, 1834. To clarify its identity, we reconstructed two mitochondrial DNA fragments of 1013 bp (cytb) and 468 bp (ND4) length of one of the two surviving syntypes and designate this specimen as lectotype (ZMB 38, Museum fu¨r Naturkunde Berlin). The sequences obtained from the lectotype represent a previously unknown lineage. Using the phylogenetic placement of all lineages and uncorrected p distances of the mitochondrial cytb gene as a yardstick, we suggest that the observed sequence variation is consistent with the existence of at least four distinct species within Pelodiscus. The name P. sinensis should be restricted to turtles harbouring the mitochondrial lineages B, C, D and the lineage of the lectotype. More divergent lineages are to be identified with P. axenaria, P. maackii and P. parviformis, which are recognized as valid species

    One extinct turtle species less: Pelusios seychellensis is not extinct, it never existed.

    Get PDF
    Pelusios seychellensis is thought to be a freshwater turtle species endemic to the island of Mahé, Seychelles. There are only three museum specimens from the late 19(th) century known. The species has been never found again, despite intensive searches on Mahé. Therefore, P. seychellensis has been declared as "Extinct" by the IUCN and is the sole putatively extinct freshwater turtle species. Using DNA sequences of three mitochondrial genes of the historical type specimen and phylogenetic analyses including all other species of the genus, we provide evidence that the description of P. seychellensis was erroneously based on a widely distributed West African species, P. castaneus. Consequently, we synonymize the two species and delete P. seychellensis from the list of extinct chelonian species and from the faunal list of the Seychelles

    JZS_632 335..339

    No full text
    Identity of Pelodiscus sinensis revealed by DNA sequences of an approximately 180-year-old type specimen and a taxonomic reappraisal of Pelodiscus species (Testudines: Trionychidae) Heiko Stuckas and Uwe Fritz Abstract Recent studies identified several distinct genetic lineages within the softshell turtle genus Pelodiscus that could represent valid species. Traditionally, Pelodiscus was regarded to comprise only a single species (P. sinensis). These softshell turtles are economically the most important chelonians of the world, with hundreds of millions of specimens traded as food every year. Moreover, Pelodiscus is used as a model organism for embryological and physiological studies, making correct species identification of paramount interest for disciplines beyond taxonomy. However, the understanding of the diversity of Pelodiscus was seriously hampered by the unclear taxonomic allocation of the oldest available species name, Trionyx (Aspidonectes) sinensis Wiegmann, 1834. To clarify its identity, we reconstructed two mitochondrial DNA fragments of 1013 bp (cytb) and 468 bp (ND4) length of one of the two surviving syntypes and designate this specimen as lectotype (ZMB 38, Museum fu¨r Naturkunde Berlin). The sequences obtained from the lectotype represent a previously unknown lineage. Using the phylogenetic placement of all lineages and uncorrected p distances of the mitochondrial cytb gene as a yardstick, we suggest that the observed sequence variation is consistent with the existence of at least four distinct species within Pelodiscus. The name P. sinensis should be restricted to turtles harbouring the mitochondrial lineages B, C, D and the lineage of the lectotype. More divergent lineages are to be identified with P. axenaria, P. maackii and P. parviformis, which are recognized as valid species

    Biogeography and population structure of predominant macrofaunal taxa (Annelida and Isopoda) in abyssal polymetallic nodule fields: implications for conservation and management

    No full text
    Abyssal plains of the Clarion Clipperton Fracture Zone (CCZ) in the NE Pacific Ocean probably harbour one of the world’s most diverse ecosystems. Gaining a basic understanding of the mechanisms underlying the evolution and persistence of CCZ biodiversity in terms of biogeography and connectivity has both scientific merit and informs the development of policy related to potential future deep-sea mining of mineral resources at an early stage in the process. Existing archives of polychaetes and isopods were sorted using a combined molecular and morphological approach, which uses nucleotide sequences (cytochrome c oxidase subunit I (COI)) and morphological information to identify appropriate sample sets for further investigations. Basic patterns of genetic diversity, divergence and demographic history of five polychaete and five isopod species were investigated. Polychaete populations were found to be genetically diverse. Pronounced long- and short-distance dispersal produces large populations that are continuously distributed over large geographic scales. Although analyses of isopod species suggest the same, spatial genetic structuring of populations do imply weak barriers to gene flow. Mining-related, large-scale habitat destruction has the potential to impact the continuity of both isopod and polychaete populations as well as their long-term dispersal patterns, as ecosystem recovery after major impacts is predicted to occur slowly at evolutionary time scales
    • …
    corecore