75 research outputs found

    Minireview: recent progress in gonadotropin-releasing hormone neuronal migration

    Get PDF
    Neurons that synthesize GnRH are critical brain regulators of the reproductive axis, yet they originate outside the brain and must migrate over long distances and varied environments to get to their appropriate positions during development. Many studies, past and present, are providing clues for the types of molecules encountered and movements expected along the migratory route. Recent studies provide real-time views of the behavior of GnRH neurons in the context of in vitro preparations that model those in vivo. Live images provide direct evidence of the changing behavior of GnRH neurons in their different environments, showing that GnRH neurons move with greater frequency and with more alterations in direction after they enter the brain. The heterogeneity of molecular phenotypes for GnRH neurons likely ensures that multiple external factors will be found that regulate the migration of different portions of the GnRH neuronal population at different steps along the route. Molecules distributed in gradients both in the peripheral olfactory system and basal forebrain may be particularly influential in directing the appropriate movement of GnRH neurons along their arduous migration. Molecules that mediate the adhesion of GnRH neurons to changing surfaces may also play critical roles. It is likely that the multiple external factors converge on selective signal transduction pathways to engage the mechanical mechanisms needed to modulate GnRH neuronal movement and ultimately migration

    Stromal cell-derived factor-1 (chemokine C-X-C motif ligand 12) and chemokine C-X-C motif receptor 4 are required for migration of gonadotropin-releasing hormone neurons to the forebrain

    Get PDF
    Gonadotropin-releasing hormone (GnRH) neurons migrate from the vomeronasal organ (VNO) in the nasal compartment to the basal forebrain in mice, beginning on embryonic day 11 (E11). These neurons use vomeronasal axons as guides to migrate through the nasal mesenchyme. Most GnRH neurons then migrate along the caudal branch of the vomeronasal nerve to reach the hypothalamus. We show here that stromal cell-derived factor-1 [SDF-1, also known as chemokine C-X-C motif ligand 12 (CXCL12)] is expressed in the embryonic nasal mesenchyme from as early as E10 in an increasing rostral to caudal gradient that is most intense at the border of the nasal mesenchyme and the telencephalon. Chemokine C-X-C motif receptor 4 (CXCR4), the receptor for SDF-1, is expressed by neurons in the olfactory epithelium and VNO. Cells derived from these sensory epithelia, including migrating GnRH neurons and ensheathing glial precursors of the migrating mass (MM), also express CXCR4, suggesting that they may use SDF-1 as a chemokine. In support of this, most GnRH neurons of CXCR4-/- mice fail to exit the VNO at E13, and comparatively few GnRH neurons reach the forebrain. There is also a significant decrease in the total number of GnRH neurons in CXCR4-/- mice and an increase in cell death within the VNO relative to controls. The MM is smaller in CXCR4-/- mice, suggesting that some MM cells also require SDF-1/CXCR4 function for migration and survival

    Live view of gonadotropin-releasing hormone containing neuron migration

    Get PDF
    Neurons that synthesize GnRH control the reproductive axis and migrate over long distances and through different environments during development. Prior studies provided strong clues for the types of molecules encountered and movements expected along the migratory route. However, our studies provide the first real-time views of the behavior of GnRH neurons in the context of an in vitro preparation that maintains conditions comparable to those in vivo. The live views provide direct evidence of the changing behavior of GnRH neurons in their different environments, showing that GnRH neurons move with greater frequency and with more changes in direction after they enter the brain. Perturbations of guiding fibers distal to moving GnRH neurons in the nasal compartment influenced movement without detectable changes in the fibers in the immediate vicinity of moving GnRH neurons. This suggests that the use of fibers by GnRH neurons for guidance may entail selective signaling in addition to mechanical guidance. These studies establish a model to evaluate the influences of specific molecules that are important for their migration

    Volumetric parcellation methodology of the human hypothalamus in neuroimaging: Normative data and sex differences

    Get PDF
    There is increasing evidence regarding the importance of the hypothalamus for understanding sex differences in relation to neurological, psychiatric, endocrine and sleep disorders. Although different in histology, physiology, connections and function, multiple hypothalamic nuclei subserve non-voluntary functions and are nodal points for the purpose of maintaining homeostasis of the organism. Thus, given the critical importance of hypothalamic nuclei and their key multiple roles in regulating basic functions, it is important to develop the ability to conduct in vivo human studies of anatomic structure, volume, connectivity, and function of hypothalamic regions represented at the level of its nuclei. The goals of the present study were to develop a novel method of semi-automated volumetric parcellation for the human hypothalamus that could be used to investigate clinical conditions using MRI and to demonstrate its applicability. The proposed new method subdivides the hypothalamus into five parcels based on visible anatomic landmarks associated with specific nuclear groupings and was confirmed using two ex vivo hypothalami that were imaged in a 7 T (7 T) scanner and processed histologically. Imaging results were compared with histology from the same brain. Further, the method was applied to 44 healthy adults (26 men; 18 women, comparable on age, handedness, ethnicity, SES) to derive normative volumes and assess sex differences in hypothalamic regions using 1.5 T MRI. Men compared to women had a significantly larger total hypothalamus, relative to cerebrum size, similar for both hemispheres, a difference that was primarily driven by the tuberal region, with the sex effect size being largest in the superior tuberal region and, to a lesser extent, inferior tuberal region. Given the critical role of hypothalamic nuclei in multiple chronic diseases and the importance of sex differences, we argue that the use of the novel methodology presented here will allow for critical investigations of these disorders and further delineation of potential treatments, particularly sex-specific approaches to gene and drug discoveries that involve hypothalamic nuclei

    Developmental profile and sexually dimorphic expression of kiss1 and kiss1r in the fetal mouse brain

    Get PDF
    The hypothalamic-pituitary-gonadal axis (HPG) is a complex neuroendocrine circuit involving multiple levels of regulation. Kisspeptin neurons play essential roles in controlling the HPG axis from the perspectives of puberty onset, oscillations of gonadotropin releasing hormone (GnRH) neuron activity and the pre-ovulatory LH surge. The current studies focus on the expression of kisspeptin during murine fetal development using in situ hybridization (ISH), quantitative reverse transcription real-time PCR (QPCR) and immunocytochemistry. Expression of mRNA coding for kisspeptin (KISS1) and its receptor KISS1R was observed at embryonic (E) day 13 by ISH. At E13 and other later ages examined, Kiss1 signal in individual cells within the arcuate nucleus (ARC) appeared stronger in females than males. ISH examination of agonadal steroidogenic factor-1 (Sf1) knockout mice revealed that E17 XY knockouts resembled wild-type XX females. These findings raise the possibility that gonadal hormones modulate the expression of Kiss1 in the ARC prior to birth. The sex and genotype differences were tested quantitatively by QPCR experiments in dissected hypothalami from mice at E17 and adulthood. Females had significantly more Kiss1 than males at both ages, even though the number of cells detected by ISH was similar. In addition, QPCR revealed a significant difference in the amount of Kiss1 mRNA in Sf1 mice with wild-type (WT) XY mice expressing less than XY knockouts (KO) and XX mice of both genotypes. The detection of immunoreactive KISS1 in perikarya of the ARC at E17 indicates that early mRNA is translated to peptide. The functional significance of this early expression of Kiss1 awaits elucidation

    Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders

    Get PDF
    BACKGROUND: Sex differences in incidence and/or presentation of schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP) are pervasive. Previous evidence for shared genetic risk and sex differences in brain abnormalities across disorders suggest possible shared sex-dependent genetic risk. METHODS: We conducted the largest to date genome-wide genotype-by-sex (GxS) interaction of risk for these disorders using 85,735 cases (33,403 SCZ, 19,924 BIP, and 32,408 MDD) and 109,946 controls from the PGC (Psychiatric Genomics Consortium) and iPSYCH. RESULTS: Across disorders, genome-wide significant single nucleotide polymorphism-by-sex interaction was detected for a locus encompassing NKAIN2 (rs117780815, p = 3.2 x 10(-8)), which interacts with sodium/potassium-transporting ATPase (adenosine triphosphatase) enzymes, implicating neuronal excitability. Three additional loci showed evidence (p < 1 x 10(-8)) for cross-disorder GxS interaction (rs7302529, p = 1.6 x 10(-7); rs73033497, p = 8.8 x 10(-7); rs7914279, p = 6.4 x 10(-7)), implicating various functions. Gene-based analyses identified GxS interaction across disorders (p = 8.97 x 10(-7)) with transcriptional inhibitor SLTM. Most significant in SCZ was a MOCOS gene locus (rs11665282, p = 1.5 x 10(-7)), implicating vascular endothelial cells. Secondary analysis of the PGC-SCZ dataset detected an interaction (rs13265509, p = 1.1 x 10(-7)) in a locus containing IDO2, a kynurenine pathway enzyme with immunoregulatory functions implicated in SCZ, BIP, and MDD. Pathway enrichment analysis detected significant GxS interaction of genes regulating vascular endothelial growth factor receptor signaling in MDD (false discovery rate-corrected p < .05). CONCLUSIONS: In the largest genome-wide GXS analysis of mood and psychotic disorders to date, there was substantial genetic overlap between the sexes. However, significant sex-dependent effects were enriched for genes related to neuronal development and immune and vascular functions across and within SCZ, BIP, and MDD at the variant, gene, and pathway levels.Peer reviewe

    Social isolation during puberty affects female sexual behavior in mice

    Full text link
    Exposure to stress during puberty can lead to long-term behavioral alterations in adult rodents coincident with sex steroid hormone-dependent brain remodeling and reorganization. Social isolation is a stress for social animals like mice, but little is known about the effects of such stress during adolescence on later reproductive behaviors. The present study examined sexual behavior of ovariectomized, estradiol and progesterone primed female mice that were individually housed from 25 days of age until testing at approximately 95 days, or individually housed from day 25 until day 60 (during puberty), followed by housing in social groups. Mice in these isolated groups were compared to females that were group housed throughout the experiment. Receptive sexual behaviors of females and behaviors of stimulus males were recorded. Females housed in social groups displayed greater levels of receptive behaviors in comparison to both socially isolated groups. Namely, social females had higher lordosis quotients (LQs) and more often displayed stronger lordosis postures in comparison to isolated females. No differences between female groups were observed in stimulus male sexual behavior suggesting that female “attractiveness” was not affected by their social isolation. Females housed in social groups had fewer cells containing immunoreactive estrogen receptor (ER) α in the anteroventral periventricular nucleus (AVPV) and in the ventromedial nucleus of the hypothalamus (VMH) than both isolated groups. These results suggest that isolation during adolescence affects female sexual behavior and re-socialization for 1 month in adulthood is insufficient to rescue lordosis behavior from the effects of social isolation during the pubertal period

    253 - Luke Allen Schwerdtfeger

    No full text
    Intestinal infections impact millions of people each year, often with ineffective treatments available. There is a lack of models capable of studying these infections that recapitulate the guts cellular environment. Addressing this, we placed biopsies from human colon into culture, and maintained the cellular environment observed in vivo, in a dish. Using this model, sex differences in colonic T-cell responses to Salmonella were observed. When culturing biopsy tissue at ~1% oxygen there was an increase in epithelial cell birth compared to atmospheric oxygen. These results signal the need for controlling oxygen and tracking sex when studying colon-microbiome interactions. Purpose: Mammalian intestines maintain a highly complex physiology that survives an extreme oxygen gradient, a mixed population of commensal and pathogenic bacteria, and a heterogeneous cell composition that includes immune, neural, and epithelial elements. Understanding disorders and developing treatment modalities for intestinal disease and infection states requires balancing multiple factors, including sex-dependence. This study begins to account for the impacts of oxygen concentrations in the context of sex, pathogen, and antibiotic exposure. Procedure: Organotypic slices from human colon biopsies provided three-dimensional environments that maintained cellular morphology and relationships, ex vivo. Biopsy slices were used to study impacts of pathogen exposure on lymphocyte counts, and oxygen and antibiotic treatments on epithelial proliferation rates. Results: Sex differences were observed in basal CD3+ T lymphocyte count in human colon, with male patients having over 2-fold more CD3+ T cells than females. When exposed to a strain of Salmonella enterica, male cell counts did not change, while there was a significant increase in CD3+ T cells in biopsy slices taken from females (P < 0.05). For intestinal mucosa, there were greater rates of epithelial cell proliferation in lowered oxygen conditions (1%) than under more standard atmospheric conditions (20%)(P < 0.05). Antibiotic treatment decreased epithelial proliferation in slices maintained in 1% oxygen, but not 20% (P < 0.05). Implications: These results show a baseline T cell sex difference in the human colon that showed a sex-dependent response to pathogen ex vivo. In addition, oxygen concentration impacted colonic epithelial cell proliferation. Together, these results point towards the need to account for oxygen concentration and sex when studying gut-microbe interactions

    Social isolation during puberty affects female sexual behavior in mice

    Get PDF
    Exposure to stress during puberty can lead to long-term behavioral alterations in adult rodents coincident with sex steroid hormone-dependent brain remodeling and reorganization. Social isolation is a stress for social animals like mice, but little is known about the effects of such stress during adolescence on later reproductive behaviors. The present study examined sexual behavior of ovariectomized, estradiol and progesterone primed female mice that were individually housed from 25 days of age until testing at approximately 95 days, or individually housed from day 25 until day 60 (during puberty), followed by housing in social groups. Mice in these isolated groups were compared to females that were group housed throughout the experiment. Receptive sexual behaviors of females and behaviors of stimulus males were recorded. Females housed in social groups displayed greater levels of receptive behaviors in comparison to both socially isolated groups. Namely, social females had higher lordosis quotients (LQs) and more often displayed stronger lordosis postures in comparison to isolated females. No differences between female groups were observed in stimulus male sexual behavior suggesting that female “attractiveness” was not affected by their social isolation. Females housed in social groups had fewer cells containing immunoreactive estrogen receptor (ER) α in the anteroventral periventricular nucleus (AVPV) and in the ventromedial nucleus of the hypothalamus (VMH) than both isolated groups. These results suggest that isolation during adolescence affects female sexual behavior and re-socialization for 1 month in adulthood is insufficient to rescue lordosis behavior from the effects of social isolation during the pubertal period
    corecore