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Minireview: Recent Progress in Gonadotropin-Releasing
Hormone Neuronal Migration

Stuart A. Tobet and Gerald A. Schwarting

Department of Biomedical Sciences (S.A.T.), Colorado State University, Fort Collins, Colorado 80523; and The Shriver
Center at the University of Massachusetts Medical School (G.A.S.), Waltham, Massachusetts 02452

Neurons that synthesize GnRH are critical brain regulators of
the reproductive axis, yet they originate outside the brain and
must migrate over long distances and varied environments to
get to their appropriate positions during development. Many
studies, past and present, are providing clues for the types of
molecules encountered and movements expected along the
migratory route. Recent studies provide real-time views of the
behavior of GnRH neurons in the context of in vitro prepa-
rations that model those in vivo. Live images provide direct
evidence of the changing behavior of GnRH neurons in their
different environments, showing that GnRH neurons move
with greater frequency and with more alterations in direction
after they enter the brain. The heterogeneity of molecular

phenotypes for GnRH neurons likely ensures that multiple
external factors will be found that regulate the migration of
different portions of the GnRH neuronal population at differ-
ent steps along the route. Molecules distributed in gradients
both in the peripheral olfactory system and basal forebrain
may be particularly influential in directing the appropriate
movement of GnRH neurons along their arduous migration.
Molecules that mediate the adhesion of GnRH neurons to
changing surfaces may also play critical roles. It is likely that
the multiple external factors converge on selective signal
transduction pathways to engage the mechanical mechanisms
needed to modulate GnRH neuronal movement and ultimately
migration. (Endocrinology 147: 1159–1165, 2006)

NEURONS THAT SYNTHESIZE and release GnRH
form the final common pathway for the central reg-

ulation of fertility. It has now been just over 16 yr since we
first learned that these neurons navigate an unusual devel-
opmental path (1, 2), migrating from their place of birth in
the nasal compartment (NC) to their final destinations scat-
tered in the basal forebrain in most vertebrates (i.e. perhaps
not lamprey) (3, 4). The characterization of GnRH neuronal
system development and function has become more com-
plicated because there are many different forms of GnRH,
some of which likely do not contribute to pituitary gonad-
otropin regulation. It is likely that neurons making different
forms within the same species may have different develop-
mental origins (5, 6). GnRH neurons that regulate the repro-
ductive axis (sometimes referred to as GnRH-1) originate
anteriorly in the NC in or around the presumptive vomer-
onasal organ (VNO) and then associate with the vomeronasal
nerve (VNN) to travel across the nasal septum and through
the cribriform plate (for previous reviews see Refs. 7–9). The
exact site of origin in the NC also may depend on species (10,
11). As the VNN defasciculates after entering the brain,
GnRH neurons maintain their association with a subpopu-
lation of fibers of the VNN that take a caudal and ventral turn
into the basal forebrain (12). As the migration of GnRH
neurons draws to a close they dissociate from their guiding
fibers to reach their final destinations (13). Thus, the migra-

tory route has at least three distinct domains: within the NC,
crossing the cribriform plate, and within the anterior fore-
brain. All of these regions likely have distinct molecular
signatures. Deciphering the manner and the method with
which GnRH neurons traverse this diversely constituted
pathway is critical for understanding the development of
neurons essential for reproduction. Furthermore, there may
be key molecular mechanisms used in common with other
migrating neurons that travel long tangential distances
through varied milieu (e.g. ganglionic eminence to cortex)
(14).

Movement and Migrations

The characterization of the migratory route and movement
of GnRH neurons from their place of birth in the NC to their
final destinations in the preoptic area and anterior hypo-
thalamus has been inferred in the majority of studies by
immunohistochemical comparisons from one stage of de-
velopment to another (1, 2, 15, 16), after DiI labeling (17), and
after olfactory ablations (18–20). In vitro, immortalized cell
lines (21–23), explants (24, 25), and mouse head slices (26, 27)
have all contributed to understanding aspects of GnRH neu-
ron development. Mice in which living GnRH neurons are
detectable by GnRH promoter-specific expression of green
fluorescent protein (28) make it possible to observe GnRH
neurons moving in real time (29).

We used our slice preparation that recapitulates relatively
normal migration across all the compartments found in vivo
(26) with GnRH-green fluorescent protein mice to visualize
changes in GnRH neuron migratory behavior as they leave
the NC to enter the forebrain (29). Early in their develop-
mental journey, GnRH neurons in the NC move intermit-
tently (33% of 5-min time-sampling periods), attaining rel-
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atively low average rates of movement (12–13 �m/h). Their
movements follow exactly along the trajectory of VNN fibers
by which they are guided (12, 13, 30, 31). As they enter the
brain, they increase their frequency of movement (61% of
5-min time-sampling periods). There is a significant increase
in turning behavior that likely partially reflects the defas-
ciculation of the VNN as it turns caudally (12, 32, 33) and
partially reflects the release of GnRH neurons from caudal
VNN fibers (13) to find their final destinations. Interestingly,
the speed of movement for GnRH neurons when they are
moving remains relatively constant; only the percentage of
time in motion changes. Therefore, GnRH neuron movement
may be governed by diverse factors that engage a common
migratory mechanism.

In addition to GnRH neurons, cortical interneurons have
also been shown to traverse a long tangential migratory route
through a changing molecular milieu that starts in the gan-
glionic eminence and extends to the layers of the cerebral
cortex (14, 34–36). There may be significant and interesting
similarities in aspects of GnRH neuron and cortical inter-
neuron migration. For example, cortical interneurons syn-
thesize �-aminobutyric acid (GABA) (37), similar to some
migrating GnRH neurons (38). GABA may influence both
tangential cortical interneuron (39, 40) and GnRH neuron
migration (13, 41). Cortical interneurons follow axonal
guides for the major portion of their journey and change their
mode of movement as they come close to their target regions
in the cerebral cortex (14, 35). GnRH neurons follow a portion
of the VNN that uniquely turns caudally after entering the
central nervous system (CNS) (12) and then may change their
mode of migration after releasing from those fibers (13). This
change in mode of migration is evident in live video exper-
iments of GnRH neurons by the increased turning behavior
and frequency of movement of GnRH neurons in the brain
vs. the NC and cribriform plate compartments. Thus, the
migration of neurons that traverse great distances may share
important characteristics, and the study of GnRH neurons
may serve as a model for long distance tangential migration
within the CNS.

Migration of GnRH neurons also shares many attributes
with migration of neural crest cells in mice. Interestingly, few
intrinsically expressed molecules that influence murine cra-
nial neural crest cells have been identified (42). Those that are
shared with cells in the developing olfactory system and with
migrating GnRH neurons include members of the ephrin/
Eph family, netrin1/deleted in colorectal cancer (DCC), fi-
broblast growth factor (FGF) receptors (FGFRs), polysialy-
lated neural cell adhesion molecule, stromal cell-derived
factor, and Dlx expression. Ephrin/Eph signaling is impor-
tant to segregate streams of migrating neural crest cells (43),
and based on recent data may also be important for the
migration of GnRH neurons exiting the NC (44). Enteric-
derived neural crest cells use netrin-1 chemoattraction for
their migration (45) and netrin-1 and its receptor DCC are
important for GnRH neuron migration (32, 33). Cells fail to
enter the second branchial arch in FGFR1 null mice (46), and
FGFR1 is now thought to be of major importance for devel-
opment of the GnRH neuronal system based on studies of
Kallmann’s syndrome patients (Ref. 47 and see below). Re-
duced polysialylated neural cell adhesion molecule may con-

tribute to the reduction of cells in sensory organs of splotch
mice (48) and alters migration of GnRH neurons (49). Ectopic
expression of Dlx2 causes significant decreases in migration
of neural crest cells and was recently found to alter GnRH
gene expression in development (50). Recently, endothelin-1,
a peptide known for developmental roles in neural crest cell
migration, was shown to influence the proliferation and
movements of an immortalized GnRH cell line (FNC-B4)
(51).

Chemical Signals and Molecular Mechanisms

Although GnRH neurons are known to have many fea-
tures in common, it has also become clear they are pheno-
typically heterogeneous (Fig. 1 and Table 1). GnRH neurons
are heterogeneous for virtually every characteristic that they
have ever been examined for, and recent single-cell PCR
experiments further amplify this point (e.g. Refs. 52–55).
GnRH neurons use vomeronasal axons as guides to migrate

FIG. 1. GnRH neurons share many features but are also phenotyp-
ically heterogeneous. GnRH neurons use vomeronasal axons (black
lines) as guides to migrate from the VNO to the ventral forebrain (FB)
during embryonic development. Netrin-1 (shaded gradient in fore-
brain) attracts a subset of VNO axons to the ventral forebrain, but
little is known about the proteins (blue segments of GnRH neurons)
on the surface of GnRH neurons that are necessary to track along the
correct axons as they migrate from the nose to the brain. These
adhesion molecules may be down-regulated as neurons detach from
axons in the forebrain. GnRH neurons possess necessary cytoskeletal
proteins and motor functions to migrate over long distances. To ex-
plain their directed migration from the VNO across the cribriform
plate (CP), one possibility would be the expression of a chemoattrac-
tant in an increasing gradient from the VNO to the rostral forebrain
(shown in green). Such a mechanism would require that GnRH neu-
rons express the appropriate receptor (yellow on GnRH neurons) as
they migrate through the gradient but lose the expression or function
of that receptor after migrating past the gradient. In addition, subsets
of GnRH neurons are known to express a variety of other proteins
(pink, green, orange, and purple, segments of neurons) that modulate
their relative mobility during the course of the migration from nose
to brain. Therefore, factors in the rostral forebrain caudal to the
cribriform plate (red triangle) may regulate defasciculation of the
VNN into two main branches in the CNS. Finally, axons (blue) tar-
geting the ventral forebrain branch from axons (purple) that target
the accessory olfactory bulb (AOB), not far from the cribriform plate.
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from the VNO to the ventral forebrain during embryonic
development in most mammalian species studied. Netrin-1
plays an important role in attracting a subset of VNO axons
to the ventral forebrain (32, 33), but little is known about the
proteins on the surface of GnRH neurons that are necessary
to track along the correct axons as they migrate from the nose
to the brain. These adhesion molecules may be down-regu-
lated as neurons detach from axons in the forebrain. Fur-
thermore, although it is clear that all GnRH neurons possess
the necessary complement of cytoskeletal proteins and motor
functions to migrate over long distances, no mechanisms
have been identified that explain their directed migration
from the VNO across the cribriform plate. One possibility
would be the expression of a chemokine or chemoattractant
in an increasing gradient from the VNO to the rostral fore-
brain (Fig. 1, shown in green). Such a mechanism would
require that all GnRH neurons express the appropriate che-
mokine receptor(s) as they migrate through the gradient but
lose the receptor expression, change the function of that
receptor after migrating past the chemokine gradient, or

engage a new ligand-receptor signaling system. Such mech-
anisms have been invoked in other locations in the CNS
where crossing the midline is a crucial aspect of axon guid-
ance (56). Subsets of GnRH neurons are known to express a
variety of other proteins that modulate their relative mobility
during the course of the migration from nose to brain (Fig.
1 and Table 1). In addition, evidence suggests that axons
targeting the ventral forebrain branch off of axons that target
the accessory olfactory bulb not far from the cribriform plate.
These data suggest that factors in the rostral forebrain caudal
to the cribriform plate (red triangle in Fig. 1) regulate defas-
ciculation of the VNN into two main branches in the CNS.
Future research is expected to greatly increase our knowl-
edge of the factors expressed by GnRH neurons as well as
along the surfaces of cells and fibers along their migratory
route.

Alterations of the GnRH neuronal migratory pathway,
specifically the VNN, impact GnRH neuronal migration in
several ways. First, changing the trajectory of the VNN
changes the migration of GnRH neurons in vitro (9) and in

TABLE 1. Genes or proteins thought to influence GnRH neurons

Gene/protein Ref.

Molecules secreted that may influence GnRH neurons
GABA 38
Norepinephrine and serotonin 59
Cholecystokinin 60
FGF 62, 63
Netrin-1 33
Gas6 7, 22
Hepatocyte growth factor 80
Brain-derived neurotrophic factor 64
Stromal derived factor-1 Our unpublished observation

Proteins on GnRH neuron cell surfaces
GABAA receptor, many possible subunits 52, 54, 55
Glutamate receptor (multiple types) 81
cMet, receptor for hepatocyte growth factor 80
Ephrin A5 tyrosine kinase 44
FGFR 47, 62, 63, 79
Norepinephrine and serotonin receptors 59
Cholecystokinin receptor 60
Adhesion-related (tyrosine) kinase 7, 22, 83
Deleted in colorectal cancer (receptor for Netrin-1) 32
Polysialylated neural cell adhesion molecule 49
NELF, nasal embryonic LHRH factor 82
GnRH receptor 89
N-VGCC, N-type voltage-gated calcium channel 67
1B2 immunoreactive lactosamine as a terminal carbohydrate on proteins or lipids 9
Tag-1, transient axonal (surface) glycoprotein 12

Proteins on cell surfaces other than GnRH neurons
Anosmin (Kal-1) 75–78
Polysialylated neural cell adhesion molecule 49
Deleted in colorectal cancer (receptor for Netrin-1) 32

Extracellular matrix
Heparan sulfate 77

Proteins in GnRH neuron cytoplasmic compartment
Extracellular signal-regulated protein
Kinase/MAPK 7
GAP-43 31
Galanin 90
Stathmin 91

Nuclear factors
MEFs, myocyte enhancer factors 83
Oct1, Dlx, Msx, NSCL2, Ebf2, GATA4, SCIP, and Brn2, homeodomain, helix-loop-helix,

and zinc finger transcription factors
50, 74, 84–87

Estrogen receptor-� 88

GnRH is the only molecular entity selectively expressed in GnRH neurons and then perhaps not all of the time.

Tobet and Schwarting • Minireview Endocrinology, March 2006, 147(3):1159–1165 1161



vivo (32, 33). Particular molecular characteristics of olfactory
fibers are absolutely necessary for migration in the NC (57).
These findings are consistent with a human case of Kall-
mann’s syndrome in which olfactory fiber disorientation in
the NC was associated with failure of GnRH neurons to enter
the brain (58). In explant cultures of olfactory placode, GnRH
neurons continue to migrate along presumptive VNN fibers
(24), likely all containing peripherin (25). Similarly, in slice
cultures, GnRH neurons migrate along peripherin-contain-
ing fibers (13, 29) derived from the VNN as they do in vivo
(30). When VNN fibers are disrupted in vitro at the cribriform
plate, the behavior of GnRH neurons in the NC is altered
distal to the actual site of disruption. In the absence of evi-
dence of changes in the VNN fibers themselves at locations
distal to the disruption at the cribriform plate region, this
suggests that the use of VNN fibers by GnRH neurons for
guidance entails selective signaling in addition to mechanical
guidance.

A number of experiments have been conducted in many
laboratories to examine the influence of different chemical
factors on GnRH neuron movements using several para-
digms. Many factors may influence GnRH neuron migration
(Table 1), including neurotransmitters (e.g. serotonin or nor-
epinephrine) (59), neuropeptides (e.g. cholecystokinin) (60),
growth factors (61–64), classical chemoattractants (e.g. ne-
trin-1) (32, 33), or chemorepellents (65). Our primary exper-
iments followed early studies of the influence of GABA on
GnRH neuron migration (13, 41). Live video microscopy (see
movies at http://endo.endojournals.org/cgi/content/full/
en.2004-0838/DC1) showed that the GABAA receptor inhib-
itor bicuculline caused an increase in the percentage of
frames in which GnRH neurons were moving and a decrease
in the percentage of frames across which they were turning
(29). Previous work had suggested that activation of the
GABAA receptor caused a decrease in GnRH neuron move-
ment (13, 41). Therefore, the result of direct observation di-
rectly supports the earlier data and extends this work to
suggest specific physical mechanisms by which GnRH neu-
ron movements are affected. Previous work also suggested
that bicuculline treatment, in particular, might drive GnRH
neurons apart from guiding fibers (13). The finding of a
change in turning behavior in the live video experiments may
be indicative of such a change in neuron/fiber interactions.
Because of the heterogeneity of GnRH neurons, it will be
important to test the influence of many factors directly on the
behavior of GnRH neurons.

External modulators of GnRH neuron function likely con-
verge on cascading signal transduction pathways that pro-
vide mechanisms that regulate neuronal migration (Fig. 2).
Therefore, multiple signals may converge on calcium sig-
naling as a general regulator of neuronal migration (66).
Recent in vitro studies suggest that GnRH neurons specifi-
cally may use N-type calcium channels for such a purpose
(67). The following three agents are examples of factors that
may exert influences on GnRH neuron migration via con-
vergent pathways. Activation of the GABAA receptors in-
fluences GnRH neuron movement (13, 41), and this action is
likely through calcium-dependent mechanisms (67, 68).
GnRH itself might influence GnRH neuron migration via an
autocrine mechanism that involves calcium signaling (69).

The chemokine stromal cell-derived factor is a known reg-
ulator of cell migration (70, 71), a potential regulator of GnRH
neuron migration (Schwarting, G. A., and S. A. Tobet, un-
published observations), and likely uses a calcium signal
transduction pathway through its CXCR4 receptor (72). Sim-
ilarly, phosphorylation cascades beginning with cell surface
receptor kinases provide multiple routes to the regulation of
both gene transcription and cytoskeletal reorganization that
would lead to cell movement and ultimately migration (7).
All of the signaling mechanisms for GnRH neuronal move-
ment must ultimately converge on mechanisms of cell ad-
hesion and cytoskeletal function to be able to modulate mi-
gration (73).

The migratory responses of neurons followed by live video
microscopy show two types of responses to external factors
(Fig. 2). These different types of responses may help deter-
mine molecular mechanisms mediating the process of GnRH
neuron migration. For example, altering GABAA receptor
signaling may cause changes in the probability of motion (29)
or in the rate of motion (as it can in the hypothalamus) (91).
One potential difference in the factors that alter the proba-

FIG. 2. External modulators may converge on central cellular regu-
latory mechanisms that regulate GnRH neuronal migration as well
as gene transcription in GnRH neurons that also includes GnRH gene
transcription. The schematic diagram represents a multitude of cell
surface receptor mechanisms that signal through the cytoplasm via
calcium- and phosphorylation-dependent cascades to result in either
altered gene transcription or cytoskeletal changes that can ultimately
result in motion that, when directed, can be seen as migration. Factors
that alter the probability of motion (A) likely engage different mech-
anisms than those that influence the rate of motion (B).
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bility of motion that might differ from those that influence
the rate of motion could be effects on adhesion vs. effects on
molecular motors or specific aspects of cytoskeletal function
(e.g. nucleokinesis). As noted earlier for GnRH neurons,
GABA might be particularly likely to influence their adhe-
sion to fibers (13) and thereby the probability of motion.

From Theory to Practice

Kallmann’s syndrome provides an important bridge be-
tween basic and clinical studies (74); it is characterized by
anosmia, hypogonadotrophic hypogonadism, as well as
other neurological problems. The anosmia likely results from
a failure to form connections between the olfactory epithe-
lium and the olfactory bulbs. The gonadal dysfunction is the
result of a deficiency in GnRH secretion. In one case of
X-linked Kallmann’s syndrome, these defects were directly
linked to the inability of cells and axons originating in the
olfactory epithelium to migrate or grow into the olfactory
bulb and forebrain early in development (58). The first can-
didate Kallmann gene named Kal-1 (75) codes for anosmin-1,
a putative adhesion molecule that may modulate neurite
outgrowth (76). More recently, mutation analyses have
shown that alterations in the autosomal gene coding for
FGFR1 provide an additional cause of Kallmann’s syndrome
and the designation of FGFR1 as Kal-2 (47). At the same time,
basic studies on the role of FGF in GnRH neuron develop-
ment are beginning to define roles of FGFs in the specifica-
tion of GnRH neuron identity (62, 63). Other studies are
linking anosmin-1 as a potential coligand for FGFR1 (77), in
concert with heparan sulfate, as mediators of neurite out-
growth that may yet connect to mechanisms of GnRH system
development. More studies are needed to determine whether
and how anosmin-1 (78) or FGFR1 plays a direct role in
regulating GnRH cell migration. As for other factors influ-
encing GnRH neurons, it appears that FGFR signaling will
account for only a subpopulation of GnRH neuronal influ-
ences (63). New clinical data, however, suggest that multiple
combinations of mutations in anosmin-1 and in FGFR1 will
identify a greater percentage of individuals with idiopathic
hypogonadotropic hypogonadism than ever before (79).

In summary, GnRH neurons, essential for reproduction in
all vertebrates, migrate over long distances and through dif-
ferent environments. Previous studies have provided strong
clues for the types of molecules and motions that one might
expect along the migratory route. New studies using live
video microscopy provide direct indications of the changing
behavior of GnRH neurons in their different environments.
Between the increasing number of molecular candidates for
regulating GnRH neuron migration and the number of useful
in vitro models to evaluate the influences of specific mole-
cules that may be important for their migration, the coming
years are likely to bring significantly more clarity to the
development of the GnRH neuronal system.
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