22 research outputs found

    Deciphering the gamma-ray sky

    Get PDF
    This thesis presents a novel spatial likelihood analysis for Imaging Atmospheric Cherenkov Telescopes (IACTs) and its use to analyse observations of the gamma-Cygni supernova remnant (SNR) with the MAGIC telescopes, a system of two IACTs. SNRs are the prime candidate source for the origin of the galactic component of cosmic rays (CRs). These objects are sufficiently extended to be resolved with gamma-ray telescopes. This allows the determination of different acceleration regions of a source, but poses issues for the current analysis approach for IACT data. IACTs detect the Cherenkov light generated in air showers, which are cascades of energetic particle that result from the interaction of gamma-rays with the molecules in the atmosphere. Currently, the emission from a source is determined using the aperture photometry approach, in which the number of gamma-ray events from the source region is compared against a source-free background control region. In the case of superimposed emission regions, an event count cannot be attributed to one emission region. Furthermore, extended objects or objects of complex morphology make the definition of the source region a difficult task. These issues can be overcome by a spatial likelihood analysis of the skymaps of IACTs. In this approach, a user-defined source template is convolved with the instrument response functions (IRFs) and the "realistic" model fitted to the event count maps via a Poissonian likelihood fit. The data analyses of space-based gamma-ray telescopes, such as the Fermi Large Area Telescope (LAT), are based on this technique. For IACTs the determination of the IRFs, however, is a challenging task: because the atmosphere is part of the detector, the IRFs cannot be measured in the laboratory but need to be computed from Monte-Carlo events for each observation individually. This thesis presents SkyPrism, a software package performing such an analysis on MAGIC data including the accurate determination of the IRFs. Using SkyPrism it was possible to analyse observations of the ~7000 year old gamma-Cygni SNR taken with MAGIC between 2015 and 2017. CRs are accelerated and confined in the shock region by magnetic turbulences ahead and behind the shock, making the level of turbulence an important ingredient of the acceleration process. Only a small high energetic fraction of CRs may escape the fast shocks of young SNRs (10000 years) almost all CRs have already escaped. I studied the escape of CRs from the shock into the interstellar medium using 85 hours of MAGIC data and 9 years Fermi-LAT data covering the energy range from 5 GeV to 5TeV. Using the theoretical model of the diffusive shock acceleration, I determined that the maximum energy of the CRs confined in the shock region decreases faster with the lifetime of the SNR than expected and that the level of turbulence is not constant over the lifetime of the SNR.Diese Dissertation befasst sich mit der Entwicklung einer Likelihood basierten Analyse für Daten von abbildenden Luft Cherenkov Teleskopen (IACTs) und deren Anwendung auf Beobachtungen des gamma-Cygni Supernova Überrestes mit den MAGIC Teleskopen, einem System von zwei IACTs. Nach heutigem Wissensstand wird der galaktische Anteil der kosmischen Strahlung (CR), relativistischer Teilchen, welche hochenergetische Gammastrahlung erzeugen, hauptsächlich in den Schockwellen der Überreste von Supernovae (SNR) beschleunigt. Diese Objekte sind ausgedehnt genug, sodass sie sich auch mit Gammastrahlen Teleskopen auflösen lassen. Dies ermöglicht einerseits eine genauere Untersuchung der verschiedenen Beschleunigungsregionen innerhalb des Objekts, stellt andererseits jedoch eine Herausforderung für die aktuellen Analysemethoden von IACTs dar. IACTs detektieren das Cherenkov Licht von Luftschauern, Teilchenkaskaden, die aus der Wechselwirkung von Gammastrahlung mit Luftmolekülen resultieren. Aktuell wird die Intensität einer Quelle aus den Daten von IACTs mittels der Apertur-Photometrie ermittelt. Dazu wird die Anzahl der detektierten Gammastrahlen-Ereignisse aus einem Gebiet um die Quelle mit der Anzahl an Ereignissen aus einem gleichgroßen Kontrollbereich ohne Quelle ermittelt. Überlagern sich jedoch Emissionsregionen, so lässt sich nicht bestimmen, zu welcher Region ein Ereignis zählt. Sehr ausgedehnte Quellen oder Objekte mit komplexer Morphologie stellen zudem ein Problem hinsichtlich der Wahl der Quellregion dar. Durch eine räumliche Likelihood Analyse auf der Basis von Himmelskarten von IACTs lassen sich die Schwierigkeiten vermeiden. Dabei wird eine benutzerdefinierte Morphologie mit der Instrumentenantwort (IRF) gefaltet und dieses "realistische" Quellmodel mittels eines Poisson-Likelihood Fits an die Messdaten angepasst. Bei satellitengestützten Gamma-Teleskopen wie dem Fermi Large Area Telescope (LAT), wird diese Methode bereits angewandt. Die Schwierigkeit für IACTs ist die Bestimmung der IRF. Da die Atmosphäre ein Bestandteil des IACTs ist, kann die IRF nicht vorab im Labor ermittelt werden, sondern muss mit Hilfe von Monte-Carlo Simulationen für jede Beobachtung individuell bestimmt werden. Diese Arbeit präsentiert das Software Paket SkyPrism, das eine solche Analyse inklusive der Bestimmung der IRFs, für die MAGIC Teleskope durchführt. Mit Hilfe von SkyPrism konnten MAGIC Beobachtungsdaten von dem ca. 7000 Jahren alten gamma-Cygni SNR analysiert werden. Während des Beschleunigungsvorgangs in SNR Schockwellen streut die CR an magnetischen Turbulenzen vor und hinter dem Schock, wodurch der Grad der Turbulenzen ein wichtiger Bestandteil des Beschleunigungsvorgangs wird. Aus den schnellen Schockwellen von jüngeren SNR (10000 Jahre) bereits nahezu die gesamte CR der Schockwelle entkommen ist und keine Beschleunigung mehr stattfindet. Die Beobachtungen mit den MAGIC Teleskopen (85 Stunden Beobachtungszeit) und dem Fermi-LAT (9 Jahre Daten) über einen Energiebereich von 5 GeV bis 5 TeV ermöglichten zum ersten Mal eine Untersuchung, wie die CR der Schockwelle eines SNR ins interstellare Medium entkommt. Mittels eines theoretischen Models für die Schockbeschleunigung konnte ermittelt werden, dass die maximale Energie, zu der die CR beschleunigt und im Schockbereich gehalten werden kann, schneller mit der Lebensdauer des SNR abnimmt als erwartet und der Grad an Turbulenzen über die Lebensdauer des SNR nicht konstant sein kann

    Deciphering the gamma-ray sky

    Get PDF
    This thesis presents a novel spatial likelihood analysis for Imaging Atmospheric Cherenkov Telescopes (IACTs) and its use to analyse observations of the gamma-Cygni supernova remnant (SNR) with the MAGIC telescopes, a system of two IACTs. SNRs are the prime candidate source for the origin of the galactic component of cosmic rays (CRs). These objects are sufficiently extended to be resolved with gamma-ray telescopes. This allows the determination of different acceleration regions of a source, but poses issues for the current analysis approach for IACT data. IACTs detect the Cherenkov light generated in air showers, which are cascades of energetic particle that result from the interaction of gamma-rays with the molecules in the atmosphere. Currently, the emission from a source is determined using the aperture photometry approach, in which the number of gamma-ray events from the source region is compared against a source-free background control region. In the case of superimposed emission regions, an event count cannot be attributed to one emission region. Furthermore, extended objects or objects of complex morphology make the definition of the source region a difficult task. These issues can be overcome by a spatial likelihood analysis of the skymaps of IACTs. In this approach, a user-defined source template is convolved with the instrument response functions (IRFs) and the "realistic" model fitted to the event count maps via a Poissonian likelihood fit. The data analyses of space-based gamma-ray telescopes, such as the Fermi Large Area Telescope (LAT), are based on this technique. For IACTs the determination of the IRFs, however, is a challenging task: because the atmosphere is part of the detector, the IRFs cannot be measured in the laboratory but need to be computed from Monte-Carlo events for each observation individually. This thesis presents SkyPrism, a software package performing such an analysis on MAGIC data including the accurate determination of the IRFs. Using SkyPrism it was possible to analyse observations of the ~7000 year old gamma-Cygni SNR taken with MAGIC between 2015 and 2017. CRs are accelerated and confined in the shock region by magnetic turbulences ahead and behind the shock, making the level of turbulence an important ingredient of the acceleration process. Only a small high energetic fraction of CRs may escape the fast shocks of young SNRs (10000 years) almost all CRs have already escaped. I studied the escape of CRs from the shock into the interstellar medium using 85 hours of MAGIC data and 9 years Fermi-LAT data covering the energy range from 5 GeV to 5TeV. Using the theoretical model of the diffusive shock acceleration, I determined that the maximum energy of the CRs confined in the shock region decreases faster with the lifetime of the SNR than expected and that the level of turbulence is not constant over the lifetime of the SNR.Diese Dissertation befasst sich mit der Entwicklung einer Likelihood basierten Analyse für Daten von abbildenden Luft Cherenkov Teleskopen (IACTs) und deren Anwendung auf Beobachtungen des gamma-Cygni Supernova Überrestes mit den MAGIC Teleskopen, einem System von zwei IACTs. Nach heutigem Wissensstand wird der galaktische Anteil der kosmischen Strahlung (CR), relativistischer Teilchen, welche hochenergetische Gammastrahlung erzeugen, hauptsächlich in den Schockwellen der Überreste von Supernovae (SNR) beschleunigt. Diese Objekte sind ausgedehnt genug, sodass sie sich auch mit Gammastrahlen Teleskopen auflösen lassen. Dies ermöglicht einerseits eine genauere Untersuchung der verschiedenen Beschleunigungsregionen innerhalb des Objekts, stellt andererseits jedoch eine Herausforderung für die aktuellen Analysemethoden von IACTs dar. IACTs detektieren das Cherenkov Licht von Luftschauern, Teilchenkaskaden, die aus der Wechselwirkung von Gammastrahlung mit Luftmolekülen resultieren. Aktuell wird die Intensität einer Quelle aus den Daten von IACTs mittels der Apertur-Photometrie ermittelt. Dazu wird die Anzahl der detektierten Gammastrahlen-Ereignisse aus einem Gebiet um die Quelle mit der Anzahl an Ereignissen aus einem gleichgroßen Kontrollbereich ohne Quelle ermittelt. Überlagern sich jedoch Emissionsregionen, so lässt sich nicht bestimmen, zu welcher Region ein Ereignis zählt. Sehr ausgedehnte Quellen oder Objekte mit komplexer Morphologie stellen zudem ein Problem hinsichtlich der Wahl der Quellregion dar. Durch eine räumliche Likelihood Analyse auf der Basis von Himmelskarten von IACTs lassen sich die Schwierigkeiten vermeiden. Dabei wird eine benutzerdefinierte Morphologie mit der Instrumentenantwort (IRF) gefaltet und dieses "realistische" Quellmodel mittels eines Poisson-Likelihood Fits an die Messdaten angepasst. Bei satellitengestützten Gamma-Teleskopen wie dem Fermi Large Area Telescope (LAT), wird diese Methode bereits angewandt. Die Schwierigkeit für IACTs ist die Bestimmung der IRF. Da die Atmosphäre ein Bestandteil des IACTs ist, kann die IRF nicht vorab im Labor ermittelt werden, sondern muss mit Hilfe von Monte-Carlo Simulationen für jede Beobachtung individuell bestimmt werden. Diese Arbeit präsentiert das Software Paket SkyPrism, das eine solche Analyse inklusive der Bestimmung der IRFs, für die MAGIC Teleskope durchführt. Mit Hilfe von SkyPrism konnten MAGIC Beobachtungsdaten von dem ca. 7000 Jahren alten gamma-Cygni SNR analysiert werden. Während des Beschleunigungsvorgangs in SNR Schockwellen streut die CR an magnetischen Turbulenzen vor und hinter dem Schock, wodurch der Grad der Turbulenzen ein wichtiger Bestandteil des Beschleunigungsvorgangs wird. Aus den schnellen Schockwellen von jüngeren SNR (10000 Jahre) bereits nahezu die gesamte CR der Schockwelle entkommen ist und keine Beschleunigung mehr stattfindet. Die Beobachtungen mit den MAGIC Teleskopen (85 Stunden Beobachtungszeit) und dem Fermi-LAT (9 Jahre Daten) über einen Energiebereich von 5 GeV bis 5 TeV ermöglichten zum ersten Mal eine Untersuchung, wie die CR der Schockwelle eines SNR ins interstellare Medium entkommt. Mittels eines theoretischen Models für die Schockbeschleunigung konnte ermittelt werden, dass die maximale Energie, zu der die CR beschleunigt und im Schockbereich gehalten werden kann, schneller mit der Lebensdauer des SNR abnimmt als erwartet und der Grad an Turbulenzen über die Lebensdauer des SNR nicht konstant sein kann

    Exploring the region encompassing γ Cygni SNR and MAGIC J2019+408 with the GMRT at 325 and 610 MHz

    Full text link
    Context. γ Cygni is a young supernova remnant located in the Cygnus region. MAGIC (Major Atmospheric Gamma Imaging Cherenkov) telescopes detected TeV emission (MAGIC J2019+408) to the north-west of this remnant, ∼5′ from its border. Aims. We want to identify the radio sources within the region encompassing γ Cygni and MAGIC J2019+408 to shed light on their nature and investigate if these radio sources could be potential contributors to gamma-ray emission. Methods. We carried out a detailed study of the data we obtained with a survey of the Cygnus region at 325 and 610 MHz with the Giant Metrewave Radio Telescope. Results. We detected several radio sources in the region where the radio and the TeV emission overlap, as well as several areas of enhanced radio emission. In particular, two of these areas of diffuse enhanced emission may correspond to the supernova remnant interacting with a high density region, which seems to be the best candidate for the MAGIC source. Another two radio sources, which may or may not contribute to the gamma rays, are also spatially coincident with the emission peak of the MAGIC TeV source. One of them displays a rather peculiar extended morphology whose nature is completely unknown. Conclusions. We have identified the radio sources overlapping γ Cygni and MAGIC J2019+408 and have shown that their potential gamma-ray contribution is likely not dominant. In addition, some of the studied sources show peculiar physical characteristics that deserve deeper multi-wavelength observations

    MAGIC and H.E.S.S. detect VHE gamma rays from the blazar OT081 for the first time: a deep multiwavelength study

    Get PDF
    https://pos.sissa.it/395/815/pdfPublished versio

    Pybkgmodel - a background modelling toolbox for the CTA

    Get PDF
    Despite the advancement in background rejection techniques, observation of the very-high-energy gamma-ray sky by imaging atmospheric Cherenkov telescopes (IACTs) are subject to an irreducible background from gamma-like hadron- or electron-induced air showers. The determination of this residual background is crucial for accurate spectral and spatial measurements. The Cherenkov Telescope Array (CTA) will become the next generation of IACTs. To unveil its full potential, the improved reconstruction performance of CTA needs to be coupled with a reliable background estimate across the entire field of view. This may become especially important in the case of the planned surveys of large areas of the sky. In this contribution we will present pybkgmodel, an open-source python software package de-veloped for CTA. It aims at providing in a consistent way the various background modelling methods, based on the experience from current IACTs such as H.E.S.S, MAGIC, and VERITAS. It is designed as a toolbox allowing a user to easily choose the optimal reconstruction approach for various target regions or a combination of several algorithms. We will introduce the design of the package as well as demonstrate its functionality using data for the CTA Large-Sized Telescope prototype (LST-1)

    Exploring the region encompassing gamma Cygni SNR and MAGIC J2019+408 with the GMRT at 325 and 610 MHz

    Get PDF
    Gamma Cygni is a young supernova remnant located in the Cygnus region. MAGIC (Major Atmospheric Gamma Imaging Cherenkov) telescopes detected TeV emission (MAGIC J2019+408) to the north-west of this remnant, about 5 arcmin from its border. We want to identify the radio sources within the region encompassing gamma Cygni and MAGIC J2019+408 to shed light on their nature and investigate if these radio sources could be potential contributors to gamma-ray emission. We carried out a detailed study of the data we obtained with a survey of the Cygnus region at 325 and 610 MHz with the Giant Metrewave Radio Telescope (GMRT). We detected several radio sources in the region where the radio and the TeV emission overlap, as well as several areas of enhanced radio emission. In particular, two of these areas of diffuse enhanced emission may correspond to the supernova remnant interacting with a high density region, which seems to be the best candidate for the MAGIC source. Another two radio sources, which may or may not contribute to the gamma rays, are also spatially coincident with the emission peak of the MAGIC TeV source. One of them displays a rather peculiar extended morphology whose nature is completely unknown. We have identified the radio sources overlapping gamma Cygni and MAGIC J2019+408 and have shown that their potential gamma-ray contribution is likely not dominant. In addition, some of the studied sources show peculiar physical characteristics that deserve deeper multi-wavelength observations.Comment: 8 pages, 6 figures, Accepted for publication in Astronomy & Astrophysic

    Resolving the origin of very-high-energy gamma-ray emission from the PeVatron candidate SNR G106.3+2.7 using MAGIC telescopes

    No full text
    The supernova remnant (SNR) G106.3+2.7 associated with a 100 TeV gamma-ray source reported by HAWC, Tibet ASγ, and LHAASO Collaborations is one of the promising PeVatron candidates. Because the SNR contains an energetic pulsar wind nebula (PWN) dubbed Boomerang powered by the pulsar PSR J2229+6114, it is unclear whether the gamma-ray emission originates from the SNR or PWN complex and whether it is caused by hadronic or leptonic processes. We observed gamma rays above 200 GeV in the vicinity of the SNR G106.3+2.7 using the MAGIC telescopes for total ∼120 hours between May 2017 and August 2019 with an angular resolution of 0.07--0.10 degrees, achieving an unprecedented exposure for this object at these energies. An extended gamma-ray emission spatially correlated with the radio continuum emission at the head and tail of SNR G106.3+2.7 was detected using the MAGIC telescopes. We found a significant gamma-ray emission above 5.65 TeV only from the SNR tail region, while no significant emission in the same band is found at the SNR head region containing the Boomerang PWN. Therefore, the gamma rays above 10 TeV detected with the air shower experiments are, likely, mainly emitted from the SNR tail region. In this presentation, we discuss the morphology of the gamma-ray emission from this complex region and attempt self-consistent multi-wavelength modeling of the energy spectrum.ISSN:1824-803

    MAGIC observations of HESS J1809-193 using the Very Large Zenith Angle technique at energies above TeV

    No full text
    The origin of Galactic Cosmic rays (GCRs), whose spectrum extends to PeV energies, is one of the longest-standing problems in astroparticle physics. One of the main sources of GCRs are regarded to be Supernova remnants (SNRs). While SNRs are known to accelerate protons, so far there is no evidence that SNRs can accelerate CRs to PeV energies. Providing that ~10% of the parent Cosmic ray energy is converted to gamma rays, the gamma-ray spectrum extending up to ~100 TeV would be a signature of a so-called Galactic PeVatron, an object responsible for the production of protons up to the knee of the Cosmic ray spectrum. The current multi-wavelength data indicate that HESS J1809-193 is one of the most promising Galactic PeVatron candidates. So far, no firm identification on the source nature has been established as there are several possible counterparts at lower energies; one of them being SNR G11.0−0.0. We report here the results of an observational campaign performed by the MAGIC telescopes on HESS J1809-193 since 2019 in the very-high-energy gamma-ray domain (E>100 GeV). The data were obtained with the Very Large Zenith Angle (VLZA) technique, which increased the collection area significantly to about one square kilometer. We used ~60 hours of collected VLZA data to explore the spectrum and the morphology of the source at energies above several TeV.ISSN:1824-803
    corecore