18 research outputs found

    Serrano (Sano) Functions with the Planar Cell Polarity Genes to Control Tracheal Tube Length

    Get PDF
    Epithelial tubes are the functional units of many organs, and proper tube geometry is crucial for organ function. Here, we characterize serrano (sano), a novel cytoplasmic protein that is apically enriched in several tube-forming epithelia in Drosophila, including the tracheal system. Loss of sano results in elongated tracheae, whereas Sano overexpression causes shortened tracheae with reduced apical boundaries. Sano overexpression during larval and pupal stages causes planar cell polarity (PCP) defects in several adult tissues. In Sano-overexpressing pupal wing cells, core PCP proteins are mislocalized and prehairs are misoriented; sano loss or overexpression in the eye disrupts ommatidial polarity and rotation. Importantly, Sano binds the PCP regulator Dishevelled (Dsh), and loss or ectopic expression of many known PCP proteins in the trachea gives rise to similar defects observed with loss or gain of sano, revealing a previously unrecognized role for PCP pathway components in tube size control

    Shift away from Nile incision at Luxor ~4,000 years ago impacted ancient Egyptian landscapes

    Get PDF
    Although the Nile is one of the largest rivers in the world and played a central role in ancient Egyptian life, little is known about its response to climatic change during the Holocene. Here we present a framework for the evolution of the Egyptian Nile, demonstrating how climatic and environmental changes have shaped the landscape of the Egyptian Nile Valley over the past 11,500 years, including the civilization of ancient Egypt (~5,000 to 2,000 years ago). Using data from over 80 sediment cores drilled in a transect spanning the Nile Valley near Luxor, pinned in time by 48 optically stimulated luminescence ages, we reconstruct the dynamics of the Nile River during the Holocene in the vicinity of UNESCO World Heritage sites such as Karnak and Luxor temples. According to our reconstruction, valley incision occurred from the start of the record until approximately 4,000 years ago and then rapidly shifted to massive floodplain aggradation. We argue that this relatively abrupt change in the riverine landscape near Luxor from the Middle to Late Holocene was linked to a shift towards a drier regional hydroclimate around this time. Such a dramatic change in river sediment dynamics could have had local agro-economic consequences

    A tumor suppressor activity of Drosophila Polycomb genes mediated by JAK-STAT signaling

    Get PDF
    A prevailing paradigm posits that Polycomb Group (PcG) proteins maintain stem cell identity by repressing differentiation genes, and abundant evidence points to an oncogenic role for PcG proteins in human cancer. Here we show using Drosophila melanogaster that a conventional PcG complex can also have a potent tumor suppressor activity. Mutations in any core PRC1 component cause pronounced hyperproliferation of eye imaginal tissue, accompanied by deregulation of epithelial architecture. The mitogenic JAK-STAT pathway is strongly and specifically activated in mutant tissue; activation is driven by transcriptional upregulation of Unpaired (Upd, also known as Outstretched, Os) family ligands. We show here that upd genes are direct targets of PcG-mediated repression in imaginal discs. Ectopic JAK-STAT activity is sufficient to induce overproliferation, whereas reduction of JAK-STAT activity suppresses the PRC1 mutant tumor phenotype. These findings show that PcG proteins can restrict growth directly by silencing mitogenic signaling pathways, shedding light on an epigenetic mechanism underlying tumor suppression
    corecore