313 research outputs found

    Phase I clinical and pharmacokinetic study of sorafenib in combination with carboplatin and paclitaxel in patients with advanced non–small cell lung cancer

    Get PDF
    Objectives Unsatisfactory efficacy of current treatments for advanced lung cancer has prompted the search for new therapies, with sorafenib, a multikinase inhibitor, being one candidate drug. This phase I trial was conducted to evaluate drug safety and pharmacokinetics as well as tumor response of sorafenib in combination with paclitaxel and carboplatin in patients with advanced non-small cell lung cancer (NSCLC). Methods Eligible patients received paclitaxel (200 mg/m2) and carboplatin (area under the curve [AUC]of 6 mg min mL−1) on day 1 and sorafenib (400 mg, twice daily) on days 2 through 19 of a 21-day cycle. Results Four of the initial six patients (cohort 1) experienced dose-limiting toxicities (DLTs), resulting in amendment of the treatment protocol. An additional seven patients (cohort 2) were enrolled, two of whom developed DLTs. DLTs included erythema multiforme, hand-foot skin reaction, and elevated plasma alanine aminotransferase in cohort 1 as well as gastrointestinal perforation at a site of metastasis and pneumonia in cohort 2. Most adverse events were manageable. One complete and six partial responses were observed among the 12 evaluable patients. Coadministration of the three drugs had no impact on their respective pharmacokinetics. Conclusion The present study confirmed that sorafenib at 400 mg once daily in combination with carboplatin AUC 5 mg min mL−1 and paclitaxel 200 mg/m2 is feasible in Japanese patients with advanced NSCLC. The results of this study also showed that this combination therapy had encouraging antitumor activity and was not associated with relevant pharmacokinetic interaction in Japanese NSCLC patients

    Enhanced antitumoral activity of TLR7 agonists via activation of human endogenous retroviruses by HDAC inhibitors

    Get PDF
    In this work, we are reporting that “Shock and Kill”, a therapeutic approach designed to eliminate latent HIV from cell reservoirs, is extrapolatable to cancer therapy. This is based on the observation that malignant cells express a spectrum of human endogenous retroviral elements (HERVs) which can be transcriptionally boosted by HDAC inhibitors. The endoretroviral gene HERV-V2 codes for an envelope protein, which resembles syncytins. It is significantly overexpressed upon exposure to HDAC inhibitors and can be effectively targeted by simultaneous application of TLR7/8 agonists, triggering intrinsic apoptosis. We demonstrated that this synergistic cytotoxic effect was accompanied by the functional disruption of the TLR7/8-NFκB, Akt/PKB, and Ras-MEK-ERK signalling pathways. CRISPR/Cas9 ablation of TLR7 and HERV-V1/V2 curtailed apoptosis significantly, proving the pivotal role of these elements in driving cell death. The effectiveness of this new approach was confirmed in ovarian tumour xenograft studies, revealing a promising avenue for future cancer therapies

    Thrombosis of abdominal aorta during cisplatin-based chemotherapy of testicular seminoma - a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vascular complications occurring during cisplatin-based chemotherapy of germ cell tumours are inadequately recognized to date.</p> <p>Case Presentation</p> <p>A 49 year old man with advanced seminoma underwent two courses of chemotherapy according to the PEB regimen. Upon restaging, two thrombotic deposits were noted in the descending part of the thoracic aorta and in the infrarenal abdominal aorta, respectively. Although thrombotic plaques caused aortic occlusion of about 30%, no clinical signs of malperfusion of limbs were registered. The patient was placed on anticoagulant therapy. Six months after completion of chemotherapy, thrombotic deposits had completely resolved. In the absence of other predisposing factors, it must be assumed that cisplatin-based chemotherapy represented a strong stimulus for arterial thrombosis in the aorta.</p> <p>Conclusions</p> <p>This is the first case of endo-aortic thrombosis during chemotherapy for testicular germ cell cancer. Providers of chemotherapy must be aware of arterial thrombosis even in young patients with testicular cancer.</p

    A clinical phase II study with sorafenib in patients with progressive hormone-refractory prostate cancer: a study of the CESAR Central European Society for Anticancer Drug Research-EWIV

    Get PDF
    Sorafenib is a multi-kinase inhibitor with antiangiogenic and antiproliferative activity. The activity of sorafenib in progressive hormone-refractory prostate cancer (HRPC) patients was investigated in a phase II clinical study. Progressive HRPC patients received sorafenib 400 mg bid p.o. continuously. Only patients with no prior chemotherapy, and either one-unidimensional measurable lesion according to RECIST-criteria or increasing prostate-specific antigen (PSA) values reflecting a hormone-refractory situation, were eligible for study entry. The primary study objective was the rate of progression-free survival of ⩾12 weeks (PFS12). Secondary end points were overall response, overall survival, and toxicity. Fifty-seven patients with PC were enrolled. Two patients had to be withdrawn from the set of eligible patients. According to RECIST criteria, 4 patients out of 55 evaluable patients showed stable disease (SD). According to PSA–response, we saw 11 patients with SD PSA and 2 patients were responders at 12 weeks (PFS12=17/55=31%). Among the 257 adverse events, 15 were considered drug related of maximum CTC-grade 3. Twenty-four serious adverse events occurred in 14 patients (14/55=26%). Seven of them were determined to be drug related. No treatment-related death was observed. Sorafenib has antitumour activity in HRPCP when evaluated for RECIST- and PSA-based response. Further investigation as a component of combination regimens is necessary to evaluate its definite or overall clinical benefit for HRPCP

    Targeting BRAF in thyroid cancer

    Get PDF
    Activating mutations in the gene encoding BRAF are the most commonly identified oncogenic abnormalities in papillary thyroid cancer. In vitro and in vivo models have demonstrated that overexpression of activated BRAF induces malignant transformation and aggressive tumour behaviour. BRAF and other RAF kinases are frequently activated by other thyroid oncogenes and are important mediators of their biological effects including dedifferentiation and proliferation. Because current therapeutic options for patients with thyroid cancers that are aggressive and/or do not respond to standard therapies are limited, BRAF and its downstream effectors represent attractive therapeutic targets. In this review, data supporting a role for BRAF activation in thyroid cancer development and establishing the potential therapeutic efficacy of BRAF-targeted agents in patients with thyroid cancer will be reviewed

    A phase I open-label study evaluating the cardiovascular safety of sorafenib in patients with advanced cancer

    Get PDF
    Purpose: To characterize the cardiovascular profile of sorafenib, a multitargeted kinase inhibitor, in patients with advanced cancer. Methods: Fifty-three patients with advanced cancer received oral sorafenib 400 mg bid in continuous 28-day cycles in this open-label study. Left ventricular ejection fraction (LVEF) was evaluated using multigated acquisition scanning at baseline and after 2 and 4 cycles of sorafenib. QT/QTc interval on the electrocardiograph (ECG) was measured in triplicate with a Holter 12-lead ECG at baseline and after 1 cycle of sorafenib. Heart rate (HR) and blood pressure (BP) were obtained in duplicate at baseline and after 1 and 4 cycles of sorafenib. Plasma pharmacokinetic data were obtained for sorafenib and its 3 main metabolites after 1 and 4 cycles of sorafenib. Results: LVEF (SD) mean change from baseline was -0.8 (±\pm8.6) LVEF(%) after 2 cycles (n=31) and -1.2 ±\pm7.8) LVEF(%) after 4 cycles of sorafenib (n=24). The QT/QTc mean changes from baseline observed at maximum sorafenib concentrations (tmaxt_{max}) after 1 cycle (n=31) were small (QTcB: 4.2 ms; QTcF: 9.0 ms). Mean changes observed after 1 cycle in BP (n=31) and HR (n=30) at maximum sorafenib concentrations (tmaxt_{max}) were moderate (up to 11.7 mm Hg and -6.6 bpm, respectively). No correlation was found between the AUC and (CmaxC_{max}) of sorafenib and its main metabolites and any cardiovascular parameters. Conclusions: The effects of sorafenib on changes in QT/QTc interval on the ECG, LVEF, BP, and HR were modest and unlikely to be of clinical significance in the setting of advanced cancer treatment

    Histone deacetylases as new therapy targets for platinum-resistant epithelial ovarian cancer

    Get PDF
    Introduction: In developed countries, ovarian cancer is the fourth most common cancer in women. Due to the nonspecific symptomatology associated with the disease many patients with ovarian cancer are diagnosed late, which leads to significantly poorer prognosis. Apart from surgery and radiotherapy, a substantial number of ovarian cancer patients will undergo chemotherapy and platinum based agents are the mainstream first-line therapy for this disease. Despite the initial efficacy of these therapies, many women relapse; therefore, strategies for second-line therapies are required. Regulation of DNA transcription is crucial for tumour progression, metastasis and chemoresistance which offers potential for novel drug targets. Methods: We have reviewed the existing literature on the role of histone deacetylases, nuclear enzymes regulating gene transcription. Results and conclusion: Analysis of available data suggests that a signifant proportion of drug resistance stems from abberant gene expression, therefore HDAC inhibitors are amongst the most promising therapeutic targets for cancer treatment. Together with genetic testing, they may have a potential to serve as base for patient-adapted therapies

    Dose Dependent Effects on Cell Cycle Checkpoints and DNA Repair by Bendamustine

    Get PDF
    Bendamustine (BDM) is an active chemotherapeutic agent approved in the U. S. for treating chronic lymphocytic leukemia and non-Hodgkin lymphoma. Its chemical structure suggests it may have alkylator and anti-metabolite activities; however the precise mechanism of action is not well understood. Here we report the concentration-dependent effects of BDM on cell cycle, DNA damage, checkpoint response and cell death in HeLa cells. Low concentrations of BDM transiently arrested cells in G2, while a 4-fold higher concentration arrested cells in S phase. DNA damage at 50, but not 200 µM, was efficiently repaired after 48 h treatment, suggesting a difference in DNA repair efficiency at the two concentrations. Indeed, perturbing base-excision repair sensitized cells to lower concentrations of BDM. Timelapse studies of the checkpoint response to BDM showed that inhibiting Chk1 caused both the S- and G2-arrested cells to prematurely enter mitosis. However, whereas the cells arrested in G2 (low dose BDM) entered mitosis, segregated their chromosomes and divided normally, the S-phase arrested cells (high dose BDM) exhibited a highly aberrant mitosis, whereby EM images showed highly fragmented chromosomes. The vast majority of these cells died without ever exiting mitosis. Inhibiting the Chk1-dependent DNA damage checkpoint accelerated the time of killing by BDM. Our studies suggest that BDM may affect different biological processes depending on drug concentration. Sensitizing cells to killing by BDM can be achieved by inhibiting base-excision repair or disrupting the DNA damage checkpoint pathway

    Sorafenib in advanced melanoma: a Phase II randomised discontinuation trial analysis

    Get PDF
    The effects of sorafenib – an oral multikinase inhibitor targeting the tumour and tumour vasculature – were evaluated in patients with advanced melanoma enrolled in a large multidisease Phase II randomised discontinuation trial (RDT). Enrolled patients received a 12-week run-in of sorafenib 400 mg twice daily (b.i.d.). Patients with changes in bi-dimensional tumour measurements <25% from baseline were then randomised to sorafenib or placebo for a further 12 weeks (ie to week 24). Patients with ⩾25% tumour shrinkage after the run-in continued on open-label sorafenib, whereas those with ⩾25% tumour growth discontinued treatment. This analysis focussed on secondary RDT end points: changes in bi-dimensional tumour measurements from baseline after 12 weeks and overall tumour responses (WHO criteria) at week 24, progression-free survival (PFS), safety and biomarkers (BRAF, KRAS and NRAS mutational status). Of 37 melanoma patients treated during the run-in phase, 34 were evaluable for response: one had ⩾25% tumour shrinkage and remained on open-label sorafenib; six (16%) had <25% tumour growth and were randomised (placebo, n=3; sorafenib, n=3); and 27 had ⩾25% tumour growth and discontinued. All three randomised sorafenib patients progressed by week 24; one remained on sorafenib for symptomatic relief. All three placebo patients progressed by week-24 and were re-started on sorafenib; one experienced disease re-stabilisation. Overall, the confirmed best responses for each of the 37 melanoma patients who received sorafenib were 19% stable disease (SD) (ie n=1 open-label; n=6 randomised), 62% (n=23) progressive disease (PD) and 19% (n=7) unevaluable. The overall median PFS was 11 weeks. The six randomised patients with SD had overall PFS values ranging from 16 to 34 weeks. The most common drug-related adverse events were dermatological (eg rash/desquamation, 51%; hand-foot skin reaction, 35%). There was no relationship between V600E BRAF status and disease stability. DNA was extracted from the biopsies of 17/22 patients. Six had V600E-positive tumours (n=4 had PD; n=1 had SD; n=1 unevaluable for response), and 11 had tumours containing wild-type BRAF (n=9 PD; n=1 SD; n=1 unevaluable for response). In conclusion, sorafenib is well tolerated but has little or no antitumour activity in advanced melanoma patients as a single agent at the dose evaluated (400 mg b.i.d.). Ongoing trials in advanced melanoma are evaluating sorafenib combination therapies
    corecore