35 research outputs found

    Optical transmission matrix as a probe of the photonic strength

    Get PDF
    We demonstrate that optical transmission matrices (TM) of disordered complex media provide a powerful tool to extract the photonic interaction strength, independent of surface effects. We measure TM of strongly scattering GaP nanowires and plot the singular value density of the measured matrices and a random matrix model. By varying the free parameters of the model, the transport mean free path and effective refractive index, we retrieve the photonic interaction strength. From numerical simulations we conclude that TM statistics is hardly sensitive to surface effects, in contrast to enhanced backscattering or total transmission based methods.We acknowledge support from ERC grant 27948, NWOVici, STW, the Royal Society, and EPSRC through fellowship EP/J016918/1

    Optical transmission matrix as a probe of the photonic interaction strength

    Get PDF
    We demonstrate that optical transmission matrices (TM) of disordered complex media provide a powerful tool to extract the photonic interaction strength, independent of surface effects. We measure TM of strongly scattering GaP nanowires and plot the singular value density of the measured matrices and a random matrix model. By varying the free parameters of the model, the transport mean free path and effective refractive index, we retrieve the photonic interaction strength. From numerical simulations we conclude that TM statistics is hardly sensitive to surface effects, in contrast to enhanced backscattering or total transmission based methods

    Nonlinear optical memory effect

    Get PDF
    Light propagating through random media produces characteristic speckle patterns, directly related to the large multitude of scattering events. These complex dynamics remarkably display robustness to perturbation of the incoming light parameters, maintaining correlation in the scattered wavefront. This behavior is known as the optical memory effect. Here we unveil the properties of the nonlinear optical memory effect, which occurs when an optothermal nonlinearity perturbs the random material. The effect is characterized through a series of pump and probe experiments in silica aerogel, in the visible range. This additional degree of freedom further generalizes the memory effect, opening the road to applications based on the nonlinear response of random media. (C) 2019 Optical Society of Americ

    Mesoscopic light transport by very strong collective multiple scattering in nanowire mats

    No full text
    Under the extreme condition of the scattering length being much shorter than the wavelength, light transport in random media is strongly modified by mesoscopic interference, and can even be halted in an effect known as Anderson localization. Anderson localization in three dimensions has recently been realized for acoustic waves and for cold atoms. Mats of disordered, high-refractive-index semiconductor nanowires are one of the strongest three-dimensional scattering materials for light, but localization has not been shown. Here, we use statistical methods originally developed for microwave waveguides to demonstrate that transport of light through nanowire mats is strongly correlated and governed by mesoscopic interference contributions. Our results confirm the contribution of only a few open modes to the transmission

    Measurements on the optical transmission matrices of strongly scattering nanowire layers

    No full text
    Light incident on a scattering medium is redistributed over transport channels that either transmit through or reflect from the medium. We perform experiments aiming at finding individual transport channels of extremely strongly scattering materials. A small number of transport channels in a scattering sample are open with transmission coefficient close to 1; field transmission mainly takes place through these channels [1-3]. This means that, even if two very different incident fields are sent to the sample, the corresponding transmitted fields are correlated. As the scattering becomes stronger, these correlations become more pronounced
    corecore