42 research outputs found

    Unconventional spin texture of a topologically nontrivial semimetal Sb(110)

    Get PDF
    The surfaces of antimony are characterized by the presence of spin-split states within the projected bulk band gap and the Fermi contour is thus expected to exhibit a spin texture. Using spin-resolved density functional theory calculations, we determine the spin polarization of the surface bands of Sb(110). The existence of the unconventional spin texture is corroborated by the investigations of the electron scattering on this surface. The charge interference patterns formed around single scattering impurities, imaged by scanning tunneling microscopy, reveal the absence of direct backscattering signal. We identify the allowed scattering vectors and analyze their bias evolution in relation to the surface-state dispersion.Comment: 10 pages, 5 figure

    One-dimensional spin texture of Bi(441): Quantum spin Hall properties without a topological insulator

    Get PDF
    The high index (441) surface of bismuth has been studied using Scanning Tunnelling Microscopy (STM), Angle Resolved Photoemission Spectroscopy (APRES) and spin-resolved ARPES. The surface is strongly corrugated, exposing a regular array of (110)-like terraces. Two surface localised states are observed, both of which are linearly dispersing in one in-plane direction (kxk_x), and dispersionless in the orthogonal in-plane direction (kyk_y), and both of which have a Dirac-like crossing at kxk_x=0. Spin ARPES reveals a strong in-plane polarisation, consistent with Rashba-like spin-orbit coupling. One state has a strong out-of-plane spin component, which matches with the miscut angle, suggesting its {possible} origin as an edge-state. The electronic structure of Bi(441) has significant similarities with topological insulator surface states and is expected to support one dimensional Quantum Spin Hall-like coupled spin-charge transport properties with inhibited backscattering, without requiring a topological insulator bulk

    An Organic Spin Crossover Material in Water from a Covalently Linked Radical Dyad

    Get PDF
    A covalently linked viologen radical cation dyad acts as a reversible thermomagnetic switch in water. Cycling between diamagnetic and paramagnetic forms by heating and cooling is accompanied by changes in optical and magnetic properties with high radical fidelity. Thermomagnetic switches in water may eventually find use as novel biological thermometers and in temperature-responsive organic materials where the changes in properties originate from a change in electronic spin configuration rather than a change in structure

    Electronic and vibrational properties of fullerenes and metallofullerenes by STM and STS

    No full text
    corecore