81 research outputs found

    Genetic and biochemical identification of a novel single-stranded DNA-binding complex in Haloferax volcanii

    Get PDF
    Single-stranded DNA (ssDNA)-binding proteins play an essential role in DNA replication and repair. They use oligonucleotide/oligosaccharide-binding (OB)-folds, a five-stranded β-sheet coiled into a closed barrel, to bind to ssDNA thereby protecting and stabilizing the DNA. In eukaryotes the ssDNA-binding protein (SSB) is known as replication protein A (RPA) and consists of three distinct subunits that function as a heterotrimer. The bacterial homolog is termed SSB and functions as a homotetramer. In the archaeon Haloferax volcanii there are three genes encoding homologs of RPA. Two of the rpa genes (rpa1 and rpa3) exist in operons with a novel gene specific to Euryarchaeota; this gene encodes a protein that we have termed RPA-associated protein (rpap). The rpap genes encode proteins belonging to COG3390 group and feature OB-folds, suggesting that they might cooperate with RPA in binding to ssDNA. Our genetic analysis showed that rpa1 and rpa3 deletion mutants have differing phenotypes; only Δrpa3 strains are hypersensitive to DNA damaging agents. Deletion of the rpa3-associated gene rpap3 led to similar levels of DNA damage sensitivity, as did deletion of the rpa3 operon, suggesting that RPA3 and RPAP3 function in the same pathway. Protein pull-downs involving recombinant hexahistidine-tagged RPAs showed that RPA3 co-purifies with RPAP3, and RPA1 co-purifies with RPAP1. This indicates that the RPAs interact only with their respective associated proteins; this was corroborated by the inability to construct rpa1 rpap3 and rpa3 rpap1 double mutants. This is the first report investigating the individual function of the archaeal COG3390 RPA-associated proteins (RPAPs). We have shown genetically and biochemically that the RPAPs interact with their respective RPAs, and have uncovered a novel single-stranded DNA-binding complex that is unique to Euryarchaeota

    Genetic and Biochemical Identification of a Novel Single-Stranded DNA-Binding Complex in Haloferax volcanii

    Get PDF
    Single-stranded DNA (ssDNA)-binding proteins play an essential role in DNA replication and repair. They use oligonucleotide/oligosaccharide-binding (OB)-folds, a five-stranded β-sheet coiled into a closed barrel, to bind to ssDNA thereby protecting and stabilizing the DNA. In eukaryotes the ssDNA-binding protein (SSB) is known as replication protein A (RPA) and consists of three distinct subunits that function as a heterotrimer. The bacterial homolog is termed SSB and functions as a homotetramer. In the archaeon Haloferax volcanii there are three genes encoding homologs of RPA. Two of the rpa genes (rpa1 and rpa3) exist in operons with a novel gene specific to Euryarchaeota; this gene encodes a protein that we have termed RPA-associated protein (rpap). The rpap genes encode proteins belonging to COG3390 group and feature OB-folds, suggesting that they might cooperate with RPA in binding to ssDNA. Our genetic analysis showed that rpa1 and rpa3 deletion mutants have differing phenotypes; only Δrpa3 strains are hypersensitive to DNA damaging agents. Deletion of the rpa3-associated gene rpap3 led to similar levels of DNA damage sensitivity, as did deletion of the rpa3 operon, suggesting that RPA3 and RPAP3 function in the same pathway. Protein pull-downs involving recombinant hexahistidine-tagged RPAs showed that RPA3 co-purifies with RPAP3, and RPA1 co-purifies with RPAP1. This indicates that the RPAs interact only with their respective associated proteins; this was corroborated by the inability to construct rpa1 rpap3 and rpa3 rpap1 double mutants. This is the first report investigating the individual function of the archaeal COG3390 RPA-associated proteins (RPAPs). We have shown genetically and biochemically that the RPAPs interact with their respective RPAs, and have uncovered a novel single-stranded DNA-binding complex that is unique to Euryarchaeota

    The experimental heating of rye, oat, spelt, wheat and barley between 215 and 300 °C: the stable carbon and nitrogen isotope data and the photographic evidence of changes to the morphology of the grains

    Get PDF
    The effect that heating has on cereal grain morphology and isotopic values has far reaching consequences for archaeobotanical research and palaeodietary reconstructions. Stable carbon and nitrogen isotopic data and mass loss percentages on, and photographs of, rye, oat, barley, wheat and spelt from a heating experiment are presented and support Stroud et al. (2023). The experiment heated rye, oat, and spelt at 215 °C, 230 °C, 245 °C, 260 °C and 300 °C for 4 h, 8h and 24 h, with each temperature/duration condition consisting of 3 samples of 10 grains per sample. The mass loss of the grains, the %C and %N, and δ13C and δ15N values are presented. Furthermore, photographs of the grains’ external and internal morphology for each temperature/duration combination are provided. The wheat and barley data of samples charred between 215 °C and 260 °C/ 4–24 h were obtained from the published and unpublished dataset of Nitsch et al. (2015) and it is this dataset which the new data builds upon. This article also provides the published and unpublished data and photographs from Nitsch et al. (2015), bringing together a dataset of nine crop species. This article provides the raw data from two cereal grain heating experiment, which will enable further research into understanding the impact of heating on both grain isotopic values and grain morphology. It also allows users to construct charred-uncharred isotopic offsets for a combination of species relevant to their research

    The Vehicle, Spring 1989

    Get PDF
    Table of Contents Home MoviesBob Zordanipage 4 Mummy BreathMichael Salempage 5 Pop ArtMonica Grothpage 6 Grey Haze and MoonAllison Stroudpage 7 The State of Being at a Soap & SudsDenise Santorpage 9 Letter HomeJim Reedpage 10 Thursday Afternoon in the StacksRebecca Dickenspage 11 Sizing DownMichael Salempage 12 Intellectual AnatomyMonica Grothpage 13 Grandmother PoemAmy Sparkspage 14 Blues of the BrothermanAlma Watsonpage 15 MigrationPatrick Peterspage 17 RidingBob Zordanipage 18 All Hallow\u27s EveErik Hansonpage 19 Waiting RoomAmy Sparkspage 20 Father, Forgive HerMonica Grothpage 21 Silent ReplyTom Caldwellpage 22 PhotographRobb Montgomerypage 24 WashdayAnn Moutraypage 25 PhotographDiane Atkinspage 26 Uptown FogRobb Montgomerypage 27 Shinbones and SkullsJennifer Berkshirepage 29 Sudden Small PhrasesPatrick Peterspage 31https://thekeep.eiu.edu/vehicle/1053/thumbnail.jp

    Beyond Eliashberg superconductivity in MgB2: anharmonicity, two-phonon scattering, and multiple gaps

    Full text link
    Density-functional calculations of the phonon spectrum and electron-phonon coupling in MgB2_2 are presented. The E2gE_{2g} phonons, which involve in-plane B displacements, couple strongly to the px,yp_{x,y} electronic bands. The isotropic electron-phonon coupling constant is calculated to be about 0.8. Allowing for different order parameters in different bands, the superconducting λ\lambda in the clean limit is calculated to be significantly larger. The E2gE_{2g} phonons are strongly anharmonic, and the non-linear contribution to the coupling between the E2gE_{2g} modes and the px,y_{x,y} bands is significant.Comment: 4 pages, 3 figure

    Prenatal tobacco and marijuana co-use: Impact on newborn neurobehavior.

    Get PDF
    Tobacco and marijuana are some of the most common prenatal substance exposures worldwide. The social acceptability and political landscape of marijuana and its potency have changed dramatically in the last two decades leading to increased use by pregnant women. Despite evidence for increasing marijuana use and high rates of co-use of tobacco (TOB) and marijuana (MJ) during pregnancy, the impact of prenatal exposure to each substance is typically studied in isolation. We investigated the influence of co-exposure to TOB and MJ on infant neurobehavioral development over the first postnatal month. Participants were 111 mother-infant pairs from a low-income, diverse sample (Mean age = 25 ± 5; 54% minorities). TOB and MJ use were assessed by Timeline Followback interview with biochemical confirmation. Three groups were identified: (a) prenatal MJ + TOB, (b) prenatal TOB only, (c) controls. Newborn neurobehavior was assessed at seven time points over the first postnatal month using the NICU Network Neurobehavioral Scale. MJ + TOB-exposed infants showed decreased ability to self-soothe (Self-regulation) and attend to stimuli (Attention), and increased need for examiner soothing (Handling) and low motor activity (Lethargy) versus unexposed infants. Despite low levels of MJ use in MJ + TOB co-users, co-exposure was associated with nearly double the impact on infant self-soothing and need for examiner soothing versus TOB-exposure alone. Effects of MJ + TOB co-exposure appeared more pronounced for daughters than for sons. Although results are preliminary, they highlight additional risk from dual exposure to MJ + TOB vs. TOB exposure alone, particularly for daughters. Results also highlight the critical importance of investigating prenatal exposures in concert and the need for intervention efforts to address MJ co-use in pregnant TOB users

    Dual predation by bacteriophage and bdellovibrio bacteriovorus can eradicate escherichia coli prey in situations where single predation cannot

    Get PDF
    Copyright © 2020 Hobley et al. Bacteria are preyed upon by diverse microbial predators, including bacteriophage and predatory bacteria, such as Bdellovibrio bacteriovorus. While bacteriophage are used as antimicrobial therapies in Eastern Europe and are being applied for compassionate use in the United States, predatory bacteria are only just beginning to reveal their potential therapeutic uses. However, predation by either predator type can falter due to different adaptations arising in the prey bacteria. When testing poultry farm wastewater for novel Bdellovibrio isolates on Escherichia coli prey lawns, individual composite plaques were isolated containing both an RTP (rosette-tailed-phage)-like-phage and a B. bacteriovorus strain and showing central prey lysis and halos of extra lysis. Combining the purified phage with a lab strain of B. bacteriovorus HD100 recapitulated haloed plaques and increased killing of the E. coli prey in liquid culture, showing an effective side-by-side action of these predators compared to their actions alone. Using approximate Bayesian computation to select the best fitting from a variety of different mathematical models demonstrated that the experimental data could be explained only by assuming the existence of three prey phenotypes: (i) sensitive to both predators, (ii) genetically resistant to phage only, and (iii) plastic resistant to B. bacteriovorus only. Although each predator reduces prey availability for the other, high phage numbers did not abolish B. bacteriovorus predation, so both predators are competent to coexist and are causing different selective pressures on the bacterial surface while, in tandem, controlling prey bacterial numbers efficiently. This suggests that combinatorial predator therapy could overcome problems of phage resistance. Importance: With increasing levels of antibiotic resistance, the development of alternative antibacterial therapies is urgently needed. Two potential alternatives are bacteriophage and predatory bacteria. Bacteriophage therapy has been used, but prey/host specificity and the rapid acquisition of bacterial resistance to bacteriophage are practical considerations. Predatory bacteria are of interest due to their broad Gram-negative bacterial prey range and the lack of simple resistance mechanisms. Here, a bacteriophage and a strain of Bdellovibrio bacteriovorus, preyed side by side on a population of E. coli, causing a significantly greater decrease in prey numbers than either alone. Such combinatorial predator therapy may have greater potential than individual predators since prey surface changes selected for by each predator do not protect prey against the other predator

    First trimester elevation in circulating endothelin-1 and arterial stiffness are predictive of late pregnancy preeclampsia

    Get PDF
    Preeclampsia (PE) is characterized by late pregnancy hypertension and proteinuria. PE causes significant morbidity for the maternal-fetal unit. Circulating endothelin-1 (ET-1), a potent vasoconstrictor, is elevated at the time of diagnosis of human PE. In addition, women with PE demonstrate arterial stiffness as early as the end of the first trimester. However, it is unknown if arterial stiffness is associated with a first trimester elevation in ET-1 and post-delivery placental ET-1. We hypothesized that 1) first trimester plasma ET-1 is elevated and is associated with arterial stiffness in women who develop PE; 2) first trimester ET-1 is predictive of PE; and 3) placental ET-1 is increased in PE. To address these questions, we performed a nested case-control study in women at risk for P

    A One Health overview, facilitating advances in comparative medicine and translational research.

    Get PDF
    Table of contentsA1 One health advances and successes in comparative medicine and translational researchCheryl StroudA2 Dendritic cell-targeted gorilla adenoviral vector for cancer vaccination for canine melanomaIgor Dmitriev, Elena Kashentseva, Jeffrey N. Bryan, David T. CurielA3 Viroimmunotherapy for malignant melanoma in the companion dog modelJeffrey N. Bryan, David Curiel, Igor Dmitriev, Elena Kashentseva, Hans Rindt, Carol Reinero, Carolyn J. HenryA4 Of mice and men (and dogs!): development of a commercially licensed xenogeneic DNA vaccine for companion animals with malignant melanomaPhilip J. BergmanA5 Successful immunotherapy with a recombinant HER2-expressing Listeria monocytogenes in dogs with spontaneous osteosarcoma paves the way for advances in pediatric osteosarcomaNicola J. Mason, Josephine S. Gnanandarajah, Julie B. Engiles, Falon Gray, Danielle Laughlin, Anita Gaurnier-Hausser, Anu Wallecha, Margie Huebner, Yvonne PatersonA6 Human clinical development of ADXS-HER2Daniel O'ConnorA7 Leveraging use of data for both human and veterinary benefitLaura S. TremlA8 Biologic replacement of the knee: innovations and early clinical resultsJames P. StannardA9 Mizzou BioJoint Center: a translational success storyJames L. CookA10 University and industry translational partnership: from the lab to commercializationMarc JacobsA11 Beyond docking: an evolutionarily guided OneHealth approach to drug discoveryGerald J. Wyckoff, Lee Likins, Ubadah Sabbagh, Andrew SkaffA12 Challenges and opportunities for data applications in animal health: from precision medicine to precision husbandryAmado S. GuloyA13 A cloud-based programmable platform for healthHarlen D. HaysA14 Comparative oncology: One Health in actionAmy K. LeBlancA15 Companion animal diseases bridge the translational gap for human neurodegenerative diseaseJoan R. Coates, Martin L. Katz, Leslie A. Lyons, Gayle C. Johnson, Gary S. Johnson, Dennis P. O'BrienA16 Duchenne muscular dystrophy gene therapyDongsheng DuanA17 Polycystic kidney disease: cellular mechanisms to emerging therapiesJames P. CalvetA18 The domestic cat as a large animal model for polycystic kidney diseaseLeslie A. Lyons, Barbara GandolfiA19 The support of basic and clinical research by the Polycystic Kidney Disease FoundationDavid A. BaronA20 Using naturally occurring large animal models of human disease to enable clinical translation: treatment of arthritis using autologous stromal vascular fraction in dogsMark L. WeissA21 Regulatory requirements regarding clinical use of human cells, tissues, and tissue-based productsDebra A. WebsterA22 Regenerative medicine approaches to Type 1 diabetes treatmentFrancis N. KaranuA23 The zoobiquity of canine diabetes mellitus, man's best friend is a friend indeed-islet transplantationEdward J. RobbA24 One Medicine: a development model for cellular therapy of diabetesRobert J. Harman

    Biomass burning and anthropogenic sources of CO over New England in the summer 2004

    Get PDF
    During the summer of 2004 large wildfires were burning in Alaska and Canada, and part of the emissions were transported toward the northeast United States, where they were measured during the NEAQS-ITCT 2k4 (New England Air Quality Study-Intercontinental Transport and Chemical Transformation) study on board the NOAA WP-3 aircraft and the NOAA research vessel Ronald H. Brown. Using acetonitrile and chloroform as tracers the biomass burning and the anthropogenic fraction of the carbon monoxide (CO) enhancement are determined. As much as 30% of the measured enhancement is attributed to the forest fires in Alaska and Canada transported into the region, and 70% is attributed to the urban emissions of mainly New York and Boston. On some days the forest fire emissions were mixed down to the surface and dominated the CO enhancement. The results compare well with the FLEXPART transport model, indicating that the total emissions during the measurement campaign for biomass burning might be about 22 Tg. The total U.S. anthropogenic CO sources used in FLEXPART are 25 Tg. FLEXPART model, using the U.S. EPA NEI-99 data, overpredicts the CO mixing ratio around Boston and New York in 2004 by about 50%. Copyright 2006 by the American Geophysical Union
    corecore