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ABSTRACT 29 

Bacteria are preyed upon by diverse microbial predators including bacteriophage 30 

and predatory bacteria, such as Bdellovibrio bacteriovorus. Whilst bacteriophage are used as 31 

antimicrobial therapies in Eastern Europe, and are being applied for compassionate use in 32 

the United States, predatory bacteria are only just beginning to reveal their potential 33 

therapeutic uses. However, predation by either predator type can falter due to different 34 

adaptations arising in the prey bacteria. When testing poultry farm wastewater for novel 35 

Bdellovibrio isolates on E. coli prey lawns, individual composite plaques were isolated, 36 

containing both an RTP-like-phage and a B. bacteriovorus strain and showing central prey 37 

lysis and halos of extra lysis. Combining the purified phage with a lab strain of B. 38 

bacteriovorus HD100 recapitulated halo-ed plaques, and increased killing of the E. coli prey 39 

in liquid culture, showing effective side-by-side action of these predators, compared to their 40 

actions alone. Using Approximate Bayesian Computation to select the best fitting from a 41 

variety of different mathematical models demonstrated that the experimental data could 42 

only be explained by assuming the existence of three prey phenotypes: (1) sensitive to both 43 

predators, (2) genetically resistant to phage only and (3) plastic resistant to B. bacteriovorus 44 

only. Although each predator reduces prey availability for the other, high phage numbers 45 

did not abolish B. bacteriovorus predation so both predators are competent to co-exist and 46 

are causing different selective pressures on the bacterial surface while, in tandem, 47 

controlling prey bacterial numbers efficiently. This suggests that combinatorial predator 48 

therapy could overcome problems of phage resistance.   49 

 50 

  51 
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IMPORTANCE 52 

With increasing levels of antibiotic resistance, the development of alternative anti-bacterial 53 

therapies is urgently needed. Two potential alternatives are bacteriophage and predatory 54 

bacteria. Bacteriophage therapy has been used but prey/host specificity and the rapid 55 

acquisition of bacterial resistance to bacteriophage are practical considerations. Predatory 56 

bacteria are of interest due to their broad Gram-negative bacterial prey-range, and the lack 57 

of simple resistance mechanisms. Here, a bacteriophage and a strain of Bdellovibrio 58 

bacteriovorus, preyed side-by-side on a population of E. coli causing significantly greater 59 

decrease in prey numbers than either alone. Such combinatorial predator therapy may have 60 

greater potential than individual predators as prey surface changes selected for by each 61 

predator do not protect prey against the other predator.  62 

 63 

KEYWORDS Bdellovibrio, bacteriophage, RTP phage, predation, co-operation, predator prey 64 

models, mathematical modelling, Approximate Bayesian Computation 65 

66 
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INTRODUCTION 67 

Rapidly rising levels of antimicrobial resistance in Gram-negative bacterial pathogens 68 

has highlighted the urgent need for the development of alternative forms of antibacterial 69 

therapies (1) and the World Health Organisation has listed several as critically urgent for 70 

new therapeutics. Many Gram-negative pathogens can be killed by a variety of 71 

bacteriophage (‘phage’) and by predatory bacteria including Bdellovibrio bacteriovorus (2, 72 

3). Bacteriophage have been used regularly in Eastern Europe and Russia as antimicrobial 73 

therapies (4). However, the development of bacterial resistance to bacteriophage can occur 74 

rapidly both in vitro and in vivo by receptor gene mutations (5-7), leading to the 75 

requirement for, and development of, phage cocktails for therapeutic purposes, including 76 

recent compassionate treatment use (8, 9). Bdellovibrio have recently been the subject of a 77 

number of in vivo studies to test their efficacy in animals (10-12), but have yet to be trialled 78 

for use in humans. Unlike bacteriophage, there are no known simple receptor gene 79 

mechanisms for resistance. 80 

Bacteriophage are obligate intracellular predators that can be found in environments 81 

wherever susceptible bacteria are available; over 95% of phage isolates described to date 82 

belong to the order Caudovirales or “tailed phage” (13). The tails of these phage attach to 83 

receptors on the surface of the host bacterium including flagella (14), lipopolysaccharide 84 

(15) or outer membrane proteins (16). Due to the specific nature of the receptor for phage 85 

attachment, the host range of each phage is typically quite small, determined by the 86 

prevalence and conservation of phage receptors in bacterial populations (17). The cellular 87 

machinery of the bacterium is rapidly hijacked by the phage, after injection of the viral 88 

genome, and redirected to synthesize and assemble new phage virions that are released to 89 

start a new infection cycle (2). Host resistance against bacteriophage infection falls within 90 
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four general categories: inhibition of adsorption; blocking injection of the viral genome; 91 

recognition and restriction modification of bacterial DNA and inhibition of the transcription 92 

and replication of phage DNA (18, 19)  93 

B. bacteriovorus predation is a biphasic process, consisting of a flagellate, rapidly 94 

swimming phase, before colliding with, attaching to and invading Gram-negative bacteria 95 

(which can be either actively growing or in stationary phase) (20). B. bacteriovorus invade 96 

prey cells by interacting with the outer membrane, creating a pore in the outer membrane 97 

and wall, through which they enter into the prey cell periplasm, sealing the pore behind 98 

them, forming a rounded structure called a bdelloplast (20). Unlike bacteriophage, which 99 

hijack prey replication machinery for their own replication, Bdellovibrio invasion results in 100 

the rapid death of the prey cell (20, 21). Periplasmic Bdellovibrio secrete many enzymes into 101 

the prey cell cytoplasm, using the cytoplasmic contents for growth. The Bdellovibrio 102 

elongates, divides into multiple progeny cells, lyses the prey bdelloplast and is released (22).  103 

By growing intracellularly, the Bdellovibrio is within an enclosed niche and does not 104 

have to compete with other bacteria for resources. The only known protection against 105 

predation is the synthesis of a paracrystalline S-layer by prey cells, however, Bdellovibrio are 106 

still able to prey on S-layer+ cells should there be any patchiness to the S-layer (23). It has 107 

been observed that, in laboratory culture, not all prey bacteria are killed by Bdellovibrio, a 108 

small population exhibits a “plastic” resistance phenotype; when removed from predators 109 

and allowed to grow, the resulting cells are as sensitive to Bdellovibrio predation as the 110 

original prey population (24). Prey resistance to antibiotics does not result in resistance to 111 

Bdellovibrio predation as has been shown in multiple studies looking at drug-resistant Gram-112 

negative pathogens (25, 26). Although well-known for their predatory nature, B. 113 

bacteriovorus are not obligate predators, approximately one in a million Bdellovibrio from a 114 
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predatory culture can be grown axenically, prey/host-independently (HI), on complex media 115 

without prey (27). 116 

Mathematical modelling of bacterial predation is being increasingly applied to 117 

understanding predation kinetics of either bacteriophage or Bdellovibrio; however 118 

modelling of predation by both types of predators on the same prey species has not yet 119 

been reported. Bacteriophage predation has been the subject of numerous studies, 120 

reviewed in (7, 28), with the models becoming increasingly complex through the inclusion of 121 

the effects of the rise of prey resistance (6), altered nutrient availability, multiple bacterial 122 

species and more (28). Modelling of Bdellovibrio predation is more limited, having started 123 

from the original Lotka-Volterra equations (29), via considering a delay between prey death 124 

and predator birth (30) to models that consider the bdelloplast stage as a separate 125 

population rather than just as a delay (31-34). Few papers considered decoys (33, 34) and 126 

one of these integrated experiments and adjusted the model to match the experiments 127 

(33). Other models considered the effect of a refuge on predation (32), the effect of serum 128 

and “plastic” resistance of prey to Bdellovibrio on predation (31), or how predation 129 

efficiency depends on prey size and other factors (35). 130 

Here, during sampling standing water on a poultry farm for novel Bdellovibrio 131 

isolates, single halo-ed plaques were observed on E. coli prey lawns. Within each halo-ed 132 

plaque was both a predatory Bdellovibrio bacteriovorus and a co-isolated bacteriophage. In 133 

this paper we use ‘prey’ as a unified term that encompasses both prey for Bdellovibrio and 134 

host for bacteriophage, as in this work a single bacterium, E. coli, acts as both prey and host 135 

and we are comparing the action of two different predators. 136 

The phage genome was partially sequenced and shown to be homologous to that of 137 

a rosette-tailed-phage (RTP) (36). The RTP phage family differ in tail structure, but are 138 
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related to the T1 phages, the receptor for some of which is a component of the E. coli outer 139 

membrane and host-resistance is reported to arise frequently (36).  140 

Our experimental analysis of predation kinetics revealed that when both predators 141 

were combined in one culture with E. coli prey, complete prey lysis was achieved in 48 142 

hours. This was in contrast to cultures containing either of the single predators where prey 143 

remained; with phage alone the remaining prey were phage-resistant, whilst with 144 

Bdellovibrio alone a subpopulation of prey remained but no acquisition of genetic resistance 145 

occurred. Mathematical modelling of this experimental system revealed that both phage 146 

resistance and the plastic resistance to Bdellovibrio predation arose in the E. coli prey 147 

population, and that the two predators were most likely acting independently and 148 

competitively rather than cooperatively. This work shows that two bacterial predators can 149 

be co-isolated from the environment, co-exist in lab cultures, and when applied in 150 

combination can result in greater killing of the prey bacterial population than by either 151 

predator alone; suggesting that Bdellovibrio-phage combinations may be a successful 152 

approach towards therapeutic antibacterials. 153 

 154 

RESULTS 155 

Isolation of environmental B. bacteriovorus and associated bacteriophage.  156 

When isolating Bdellovibrio from 0.45 m filtrates of standing water on a poultry farm, one 157 

isolate rapidly lysed offered E. coli lab cultures, and repeatedly produced plaques with large 158 

“halos” around them on prey lawns (Fig. 1A). These plaques contained characteristic small, 159 

highly-motile B. bacteriovorus-like bacteria (Fig. 1B), and “bdelloplasts” - infected E. coli 160 

prey cells containing live B. bacteriovorus. Sequencing and alignment of the 16S rRNA gene 161 

amplified from predatory Bdellovibrio purified from a single isolated “halo-ed” plaque 162 
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showed that the Bdellovibrio was a member of the B. bacteriovorus species, and its 16S 163 

rRNA sequence (GenBank accession no: GQ427200.1) to be 99% identical to that of the type 164 

strain HD100 (37). Therefore the isolated Bdellovibrio was named B. bacteriovorus angelus, 165 

due to the initial halo-ed appearance of the plaques from which it was isolated.  166 

Predatory cultures derived from individual “halo-ed” plaques, when filtered through 167 

0.22 m filters, which retain B. bacteriovorus, were found to contain an agent that lysed E. 168 

coli giving different cell debris (without the rounded bdelloplasts). The concentrated filtrate 169 

showed several prominent protein bands on SDS PAGE (Fig. S1A). One of these bands (of 170 

approximately 30 kDa) was found, by MALDI QToF MS, (Fig. S1B) to contain 5 peptides 171 

which were homologous to the 34 kDa protein RTP27 (GenBank accession no: CAJ42231.1) 172 

of a rosette-tailed phage (RTP) of E. coli (36). Simultaneous electron microscopy of the 0.22 173 

m filtrate revealed many phage particles with curved tails that resembled RTP, without 174 

such a pronounced rosette on the tail (Fig. 1C). The phage was given the abbreviated name 175 

“halo” and the 46 kDa double stranded DNA phage genome was purified and 7 kb of it was 176 

sequenced (GenBank GQ495225.1 bacteriophage halo named RES2009a) and compared in 177 

BLAST to other phage genomes. The best matches were to phage genomes belonging to the 178 

“rtpvirus” genus, including the characterised RTP phage (EMBL AM156909.1) (36). The 179 

phage halo was plaque-purified away from the B. bacteriovorus, using a kanamycin resistant 180 

E. coli as prey (as B. bacteriovorus angelus was found to be kanamycin sensitive - as is the 181 

type strain HD100) and so was inhibited from predatorily replicating in the KnR E. coli in the 182 

presence of the antibiotic).  183 

Thus B. bacteriovorus angelus and bacteriophage halo had been co-isolated, from 184 

the same environment, via single “halo-ed” plaques in bacterial prey lawns, in which both 185 
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predators were preying, side by side, upon the same offered E. coli population and thus it is 186 

possible that they prey similarly in the natural environment. 187 

 188 

E. coli resistance to bacteriophage halo occurred rapidly.  189 

Rapid phage resistance was observed in E. coli S17-1 cultures that were preyed upon by the  190 

bacteriophage halo alone; with a persistent level of E. coli remaining after 16 hours of 191 

infection (see Fig. 2B for an example from later growth experiments). Two independently-192 

derived phage-resistant E. coli cultures, (F & G), were isolated by plating out the remaining 193 

E. coli prey cells from these 16 hour cultures – preyed upon by the phage alone. The two 194 

isolates were verified as being phage-resistant by being tested for phage predation again. 195 

Genome sequencing of each isolate, alongside the original E. coli S17-1 strain used in the 196 

experiments, was performed to identify the mutations that resulted in phage resistance. 197 

This revealed (Table 1) that two different IS4 transposase insertions had occurred and been 198 

selected for in the genomes of resistant strains F and G within the same gene - encoding the 199 

ligand-gated outer membrane porin FhuA responsible for ferric hydroxamate uptake 200 

through the outer membrane (36). The FhuA protein is known to act as a receptor for other 201 

phages and is likely to be the receptor for phage halo (38).  202 

The two halo-phage resistant E. coli derivatives grew at similar rates to the parental 203 

E. coli S17-1 strain. Using the phage resistant E. coli as prey in lawns in overlay plates 204 

allowed for plaque formation by, and subsequent purification of, the B. bacteriovorus 205 

angelus isolate away from the phage (Fig. S2A), as phage resistance did not confer any 206 

resistance to predation by B. bacteriovorus. 207 

We also verified (data not shown) that B. bacteriovorus is not susceptible to lytic or 208 

lysogenic infection by bacteriophage halo in two tests.  Firstly, using host-independent 209 
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derivatives of both B. bacteriovorus angelus and HD100 (isolate HID13 (21)) as prey in lawns 210 

onto which bacteriophage halo was added. No zones of clearing were observed, even after 211 

prolonged incubation. Secondly, after addition of bacteriophage to liquid cultures of pure 212 

attack-phase B. bacteriovorus angelus, or HD100, no evidence of phage infection was seen 213 

when observed microscopically or enumerated. Thus B. bacteriovorus itself is not 214 

susceptible to the bacteriophage halo during either predatory or prey-independent 215 

lifecycles. 216 

 217 

Experimental predation by combined B. bacteriovorus HD100 and halo-phage predators 218 

eradicates E. coli prey unlike single predators.  219 

To test the effects of predation by the two predators on a single prey population at the 220 

same time, the kinetics of predation by equal numbers of phage alone, B. bacteriovorus 221 

alone and B. bacteriovorus plus phage on E. coli S17-1 was measured alongside an E. coli 222 

with buffer control (Fig. 2A-D) using methods as detailed below. We had found no specific 223 

association between the phage and the environmental B. bacteriovorus co-isolate as mixing 224 

the purified halo phage and pure B. bacteriovorus angelus or B. bacteriovorus HD100 225 

suspensions together both reconstituted halo-ed plaques on a lawn of E. coli prey. Having 226 

noted that predation rates in liquid cultures of each of the two B. bacteriovorus strains 227 

angelus and HD100 were the same, but that HD100 forms larger (and hence more visible 228 

and countable) plaques, the HD100 strain was used in predation kinetics studies on E. coli 229 

with or without the phage. 230 

As phage are usually grown in log-phase prey cultures in broth and B. bacteriovorus 231 

on stationary phase prey in calcium HEPES buffer, a “compromise” late log-phase E. coli 232 

prey, of starting OD600nm 0.75, was used with a mean initial E. coli population of 2.9 × 108 233 
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cfu/ml.  Deliberate inclusion of an equal volume of background YT medium used for the E. 234 

coli pre-culture in the CaHEPES buffer gave a low nutrient environment, which allowed for E. 235 

coli viability throughout the 48 hour test period (Fig. 2B). 236 

 237 

The overall kinetics of the 48 hour experiments were followed by optical density at 600 nm 238 

(OD600; Fig. 2A) and viable counts (Fig. 2B,C,D), which indicated that, during the first 24 hour 239 

period, E. coli was killed more slowly by B. bacteriovorus, than when preyed upon by both B. 240 

bacteriovorus and bacteriophage halo together (Fig. 2B). When incubated solely with the 241 

bacteriophage halo, the E. coli numbers decreased rapidly, reaching the lowest prey density 242 

of 2.1 × 103 cfu/ml at 6-8 hours; after which the E. coli population began to rise, due to the 243 

increase in phage resistant cells within the prey population (Fig. 2B). Interestingly, when the 244 

prey were incubated with both the phage and the B. bacteriovorus, this increase in prey 245 

numbers did not occur, instead the E. coli population was eradicated after 14 hours, 246 

dropping to below detectable numbers (less than 10 cfu/ml) (Fig. 2B). The phage and B. 247 

bacteriovorus population numbers were lower (by 10-fold and 100-fold respectively at the 248 

48 hour timepoints) in the combined culture, likely due to the reduced numbers of prey 249 

available to each predator population (Fig. 2C and D). It was noteworthy that adding an 250 

equal number of 5 × 106 pfu/ml of the other predator, each with the potential to kill and 251 

remove an E. coli cell from the available prey pool, caused 10 fold less reduction in phage 252 

numbers than in B. bacteriovorus numbers. This may be due to more rapid kinetics of E. coli 253 

predation by phage versus the slower kinetics of killing by B. bacteriovorus.  As the 254 

emergence of genetic or plastic resistance, respectively to the two different predators, 255 

would be expected to have a major effect, we modelled these processes mathematically to 256 

investigate them further. 257 
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 258 

Mathematical modelling of co-predation. Modelling started from a one prey and one 259 

predator model (35). A bacteriophage was added as a second predator to build the base 260 

model of the experimental system (Fig. 3). This base model has one (E.coli) prey type (N) 261 

and two consumers of the prey, the Predator B. bacteriovorus (P) and the Virus 262 

bacteriophage halo (V). Both attack and enter the prey to form a distinct stage, thereby 263 

removing prey and predator from their respective populations. When B. bacteriovorus 264 

enters the prey, a bdelloplast (B) is formed. When the phage infects the prey, an Infected 265 

prey (I) is formed. Upon lysis of B or I, resources enabling regrowth of prey called M for 266 

Medium are released, together with the respective predator offspring.  267 

The combined resource M is needed because the experimental data shows regrowth 268 

of E. coli during halophage predation (Fig. 2B). Altogether, the base model (Fig 3A) has 6 269 

variables shown as circles. Processes are shown as arrows and terms of the equations in Fig. 270 

3. These are: (i) prey growth by consumption of medium, (ii) predation of prey by available 271 

B. bacteriovorus to yield the Bdelloplast, (iii) predation by free bacteriophage halo (virus) to 272 

yield the Infected prey, (iv) maturation (replication and development) of B. bacteriovorus 273 

within the bdelloplast, (v) maturation of the bacteriophage (virus) within the Infected prey, 274 

(vi) lysis of bdelloplast which yields free replicated B. bacteriovorus and releases nutrients 275 

which replenish Medium, (vii) lysis of Infected prey which yields free Virus and also releases 276 

nutrients which replenish Medium. The nutrients remaining were not sufficient to produce 277 

further whole progeny B. bacteriovorus or more phage, but will be a small residue of what 278 

did constitute the original prey cell as most nutrients were used in producing B. 279 

bacteriovorus or phage progeny. As mentioned above the Medium does allow some limited 280 

growth of the prey.  281 
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We also included (viii) mortality for B. bacteriovorus as this was evident from Fig. 2C 282 

and is well known from the literature (33, 39). We did not include mortality for E. coli and 283 

the halophage since the data showed no evidence for this during the 48 h experimental 284 

time-period (no statistically significant trend; Fig. 2B and D). 285 

From this base model (Fig 3), we generated a family of related models, adding additional 286 

variables and processes step by step and testing different mechanisms for the transitions 287 

between entities (Fig. 4). We then used Bayesian inference to select, in several stages, the 288 

model variant that best fitted the population dynamics observed in the experiments (Fig. 5, 289 

see also Fig. S6 demonstrating reproducibility). A full description of the model variants and 290 

the Approximate Bayesian Computation process for model selection and parameter 291 

inference is given in Supplemental Text. 292 

Competing the top level model variants with one, two, three or four prey types (Fig. 293 

4C) gave clear results (Fig. 5A). The model variant N1 with prey sensitive to both predators 294 

(NS) and variant N2 with only NS and bacteriophage resistant prey (NR) were not supported 295 

by the experimental data at all. The variant N3 with NS, NR and prey exhibiting the “plastic” 296 

phenotypic resistance to B. bacteriovorus predation (NP), was best supported by the 297 

experimental data, while variant N4 including the double resistant prey (ND) was less 298 

supported (Fig. 5A). N3 and N4 are nested models with the same number of parameters, so 299 

fitting variant N4 is not intrinsically more difficult. Using the parameter values generated by 300 

fitting either of the variants N3 or N4, predicted similarly low levels of double resistant prey 301 

at the end of the experiment when applied to the equations of variant N4. Variant N4 fitted 302 

to all data predicted 0.26 cfu/ml while the same variant using parameters from fitting 303 

variant N3 to all data predicted 0.0084 cfu/ml. Both are well below the detection threshold 304 

in the experiments (10 cfu/ml). Variant N4 predicts double resistance to occur, albeit at a 305 
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very low level, however the data could not provide information to constrain this density. 306 

Due to these considerations and the aim to choose the minimal adequate model, the N3 307 

model variant was selected for further study.  308 

After selecting this three prey type N3 model, we tested various sub-models based 309 

on different ways in which the sensitive prey type converts to the type with plastic 310 

phenotypic resistance to B. bacteriovorus and back (Fig. 4Di). The simplest assumption is 311 

that forward and backward conversion occur spontaneously at certain rates, without any 312 

external triggers (intrinsic conversion both ways, variant I). This was not supported by the 313 

data (Fig. 5B). Another model variant replaces the intrinsic back conversion with a growth-314 

coupled conversion (variant IG). This variant was well supported by the data. A third variant 315 

replaces the intrinsic conversion by a signal-triggered conversion to plastic resistance 316 

(variant S). At this initial stage in the modelling, the signal was assumed to be generated by 317 

the lysis of bdelloplasts and phage infected cells. Plastic resistance has been previously 318 

described (24) as developing to B. bacteriovorus in predatory cultures, due to (as yet 319 

unidentified) molecular signals changing prey metabolism/development but it is not due to 320 

genetic changes in the prey as when those prey are grown in new cultures and re-321 

challenged with B. bacteriovorus  they are susceptible once more (21). This variant S had 322 

some support from the data (Fig. 5B). Hence, we tested whether a combination of the two 323 

supported variants would fit better. This combined variant SG, with signal triggered 324 

conversion to plastic resistance plus growth-coupled back conversion, was better supported 325 

by the data than its parental variants (Fig. 5C).  326 

Following this, we compared variants where the source of the signal was interaction 327 

of prey with phage only, or B. bacteriovorus only, or both (Fig. 5D). Since there was no 328 

evidence for phage involvement, and the two variants with B. bacteriovorus involvement 329 
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were about equally supported, we concluded that B. bacteriovorus interaction with prey 330 

was sufficient to generate the signal for plastic resistance.  331 

Likewise, we looked in the model at different ways in which the phage resistant prey 332 

arise (Fig. 4Dii). We compared the simpler sub-models where some phage resistant prey are 333 

already present at the beginning of the experiment, as in the classic fluctuation test of Luria 334 

and Delbrück (40), or only develop as de novo mutations during the experiment with the 335 

combined sub-model that had both pre-existing and de novo mutations. This combined 336 

model variant was best supported by the data and de novo developing mutations alone are 337 

insufficient to explain the data (Fig. 5E).  338 

Modelling predation-rate saturation  339 

After finding the ‘best’ or most appropriate model variant for prey type conversions, 340 

we looked at the low level model variants (Fig. 4E) where details of the model are varied but 341 

not the number of prey types and their conversion. One such detail is whether the 342 

predation rate saturates at higher prey density or not (Fig. 4E). Only the variant assuming no 343 

saturation of predation rate for the phage but saturation of predation rate for B. 344 

bacteriovorus was supported by the data (Fig. 5F). This does not mean that phage predation 345 

would not saturate at higher prey densities than we investigated in this study, but that the 346 

bacterial predator saturates at lower prey densities than the phage (see parameters in Table 347 

S1). This is expected as the longer the prey ‘handling time’ for a predator, the more its 348 

response will saturate when prey becomes abundant (41). It is well known that B. 349 

bacteriovorus takes longer to attach and enter its prey periplasm than phage (20) and our 350 

results support this (42). Lack of saturation facilitates the observed rapid initial prey killing 351 

by phage (Fig. 2). We did not consider saturation effects at high phage densities in this study 352 

because there was little information in the data from experiments that concentrated on 353 
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later timepoints and the rise of phage resistance to parameterise phage saturation (there is 354 

only a brief interval with high phage density while sensitive prey are available, see Fig. 2B & 355 

D). We did however model different initial prey densities as shown in Figure S8, see below. 356 

 357 

The final model shows effective side-by-side action of dual predators.  358 

The final, most appropriate model variant was then fitted to all the data (Fig. 6A-D). We 359 

explain in Supplemental Text how we used Principal Component Analysis to objectively 360 

select a typical parameter set out of the hundreds of accepted fits. The final model fits the 361 

prey dynamics well, apart from the exact kinetics of the decline of prey in the presence of B. 362 

bacteriovorus as the only predator (Fig. 6B) where prey density does not drop as gradually in 363 

the model as in the experiments. Despite trying many variants of prey type conversions, we 364 

could not find any variant that would give a better fit to this more gradual decline of prey 365 

without making the fit to other parts of the data much worse, so Fig. 6A-D shows the best fit 366 

we could obtain. 367 

We also compared the fit of this final model to all data (Fig. 6A-D) with the fit of the 368 

same model to all data, excluding that from two predators acting on one prey (Fig. 6E-H). 369 

The two fits are almost the same. This means that the experimental results can be explained 370 

without invoking any direct interactions between the two predators.  371 

 372 

Dependence on initial densities. 373 

To understand the dependence of predation success on the initial densities of prey and 374 

predators, we used the model to predict the outcome if we varied one population at a time, 375 

increasing as well as decreasing initial densities 10-fold (Fig. S8). The time series of the three 376 

related traces (10-fold lower, normal, 10-fold higher initial densities) showed similar 377 
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qualitative behaviour for cases with prey only and prey with a single predator. Here, the 378 

three traces either converged in the end or their separation was less than the 10-fold initial 379 

separation. Prey could survive during dual predation if (i) the initial density of prey was too 380 

high, or (ii) the initial density of B. bacteriovorus was too low or (iii) the initial density of the 381 

phage was too high (Fig. S8F-H). The model can thus identify suitable densities of the 382 

predators to add for effective predation.  383 

 384 

Modelling reveals interactions of sub-populations of predators and prey 385 

The modelling allowed insights into the different sub-populations that comprised the 386 

observed total bacterial populations (Fig. 6I-L). In the simulated B. bacteriovorus-only 387 

predation, the B. bacteriovorus population is evenly split between free B. bacteriovorus and 388 

bdelloplasts from 2 to 20 hours. Afterwards, the bdelloplasts decline exponentially while 389 

free B. bacteriovorus increase a little (due to progeny release from bdelloplasts) and then 390 

decline again due to their mortality (Fig. 6J). Both the fully-susceptible and phage-resistant 391 

prey populations plummet at 20 hours, when the plastic resistant prey has reached a 392 

plateau (Fig. 6J). In the simulated phage-only predation, sensitive prey rapidly dropped in 393 

the first 6 hours, afterwards the phage resistant prey increased exponentially until reaching 394 

a plateau (Fig. 6K). In the simulated dual predation, the phage is mostly responsible for the 395 

rapid drop of the susceptible prey and the removal of the intermittently arising plastic B. 396 

bacteriovorus resistant prey, whilst B. bacteriovorus is responsible for the removal of the 397 

phage resistant prey. All three prey populations are eradicated by the two predators 398 

together (Fig. 6K).   399 
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DISCUSSION 400 

When attempting to isolate Bdellovibrio strains from environmental sources, a 401 

sample of chicken farm wastewater gave halo-ed plaques on lawns of E. coli, due to the 402 

combined predation by the new strain of B. bacteriovorus, which we named angelus, and an 403 

RTP-like bacteriophage, which we named halo. The combined predation was also produced 404 

by the addition of bacteriophage halo to lab strain B. bacteriovorus HD100. We combined 405 

both experimental and mathematical modelling approaches to unravel the dynamics of this 406 

combinatorial predation, showing that a combination of two microbial predators eradicated 407 

a single pathogenic bacterial species in conditions when each alone did not. The modelling 408 

suggested that B. bacteriovorus killed all the phage resistant prey types and the phage halo 409 

killed all the plastically B. bacteriovorus-resistant prey. This suggests that combinatorial 410 

predator therapy may be one approach to tackle the problem of phage resistance in phage 411 

therapy treatments. 412 

Although found co-associated in nature, the RTP-family phage halo did not attach to, 413 

lyse or lysogenise the B. bacteriovorus, but was found to prey alongside it on E. coli in 414 

experimental lawns, producing the halo-ed plaques.   415 

There were several possibilities for how the combined predators were behaving in 416 

the mixed cultures – were they acting independently on the prey, in competition with each 417 

other at overlapping receptor sites, were the phage aiding in some way predation by the 418 

Bdellovibrio, or vice versa, was the phage acting as an opportunistic passenger, or were 419 

there subsets of the prey population that were susceptible to predation by each? The 420 

mathematical modelling allowed investigation of this beyond experimental limits. The 421 

model selection results revealed the presence of three subsets of the prey population, those 422 
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susceptible to both predators, and those resistant to predation by either the phage or the 423 

Bdellovibrio. 424 

The final model gave a good fit to the co-predation experimental data. Moreover, 425 

when fitted to just the data sets containing the prey only and the single predators, the 426 

resulting parameter values gave a very similar fit to the experimental data for the combined 427 

predation conditions. As the final model does not contain any terms for direct interactions 428 

between the two predators, combined with the fact that fitting to single predator data 429 

predicts the combined predation results, we conclude that the two predators act 430 

independently.  431 

One question did remain to why did we isolate halo-ed plaques from the 432 

environment which contained both predators, if they can operate independently? Clearly 433 

during our dual predation experiments a final yield of c1 × 1010  phage were present from a 434 

prey population which yielded c1 × 106 
 B. bacteriovorus, so phage were in 10,000 fold 435 

excess. High phage abundance was probably the reason for their presence in each plaque. 436 

The rapid accumulation of phage resistant populations of E. coli, preyed upon by phage, 437 

provides no barrier to B. bacteriovorus predation so does not prevent co-occurrence. 438 

Purification of each predator made it possible to study their individual and combined 439 

effects in ways not possible in other studies (43). Employing a low-nutrient environment 440 

allowed predation by each predator, and allowed sustained viability of the E. coli population 441 

over the 48 hours of investigation. Experimental predation by the Bdellovibrio alone 442 

resulted in a gradual decrease in prey numbers from 1.2 × 109 cfu/ml to a minimum of 2.0 × 443 

104 cfu/ml (Fig. 2). This is consistent with other reports of Bdellovibrio predation on a variety 444 

of different prey species where complete killing of the prey population was not observed 445 

(26, 31, 33). The modelling revealed that a subpopulation of prey arose that would exhibit a 446 
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“plastic” resistance to Bdellovibrio predation, a form of resistance that is not genetically 447 

encoded, and is also not passed to daughter cells, consistent with the “plastic” resistance 448 

phenotype previously reported (24). It had previously been hypothesised (24) that this 449 

resistance would arise due to the release of a molecular signal from the lysis of the 450 

bdelloplast, and the modelling supports such a mechanism. This “plastic” resistance may 451 

pose a problem if considering the therapeutic application of Bdellovibrio (3), as it may limit 452 

the reduction of pathogen numbers, although the immune system has been shown to act 453 

synergistically in vivo (12). In addition, physiological state of prey (leading to plastic 454 

resistance or not) may be different in the in vivo growth conditions. Our modelling predicts 455 

that, in a dual predation setting, the balance between applied predator numbers is 456 

important and that adding sufficient but not excess phage with B. bacteriovorus gives the 457 

best outcome.  458 

Predation by the phage alone resulted in a 10-fold larger (but transient) decrease of 459 

the prey population to 2.1 × 103 cfu/ml (seen at 6 hours, Fig. 2B), before phage-resistant 460 

prey growth resulted in a final prey population at 48 hours similar to the starting 461 

population. The model assumed the presence of a small fraction of phage resistant prey at 462 

the beginning of the experiment; the median value of this fraction was 2.6 × 10-6 after fitting 463 

(Table S1). This is similar in order of magnitude to previously reported values for E. coli (5, 464 

40). The model evaluations indicated that the rise in bacteriophage-resistant prey resulted 465 

both from growth of this initial, resistant population and spontaneous mutations arising in 466 

members of the initially phage-sensitive prey population. Both were selected for during the 467 

time course of the experiment. Replication of the phage-resistant prey resulted in the 468 

production of phage-resistant progeny, consistent with resistance being the result of genetic 469 

mutation. Sequencing of the phage resistant genomes points to the absence of the ferric 470 
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hydroxamate uptake, FhuA, protein as the reason for E. coli resistance to phage halo. This 471 

mutation would have little fitness effect in the iron-containing environment of our 472 

experimentation and given additional routes of iron uptake by E. coli. 473 

The most noteworthy result of our study was the eradication of E. coli prey 474 

(reduction below detectable levels of less than 10 cells/ml) when preyed upon by both the 475 

B. bacteriovorus and the phage together (Fig. 2). The modelling revealed that the two 476 

predators were not interacting directly with each other as the experimental results could be 477 

recapitulated by the model using the data from the individual predators, without the need 478 

for the inclusion of any terms for direct interactions between predators. This suggests the 479 

potential for this phenomenon to be replicated for other combinations of Gram-negative 480 

prey, B. bacteriovorus and prey-specific bacteriophage, something that should be further 481 

investigated (beyond the scope of this paper). Such combinatorial predator therapy could be 482 

considered as a future alternative antibacterial treatment reducing bacterial numbers to 483 

lower levels than achievable with single predators alone, and reducing the selection for 484 

single predator-specific resistance.  485 
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MATERIALS AND METHODS 486 

Bacterial strains, maintenance and isolation. E. coli S17-1 (44) prey were grown for 16 487 

hours in YT broth (45) at 37oC with shaking at 200 rpm to late-log phase for use in predatory 488 

Bdellovibrio cultures (see below for predation kinetics description). B. bacteriovorus 489 

predatory cultures were set up as previously described and consisted of a mixture of 490 

Calcium HEPES buffer, E. coli culture and a previous B. bacteriovorus culture in a 50:3:1 v:v:v 491 

ratio (45) at 29oC with shaking at 200 rpm. Where stated, the B. bacteriovorus type strain 492 

HD100 (37, 46) was used for comparison. Host-independent (HI) B. bacteriovorus were 493 

grown as described in (45, 47), the HD100 derivative HID13 was described in (21) and the 494 

angelus HI strain was obtained as part of this study. 495 

Bdellovibrio  bacteriovorus strain angelus and bacteriophage halo were co-isolated 496 

using E. coli S17-1 as prey on YPSC double-layer agar plates as described previously (45). The 497 

bacteriophage halo was purified from the mixed phage-B. bacteriovorus cultures by growing 498 

the phage on E. coli S17-1 containing the plasmid pZMR100 (48) to confer resistance to 499 

kanamycin, which was added at 50 μg/ml, killing the KnS B. bacteriovorus angelus, using 500 

repeated rounds of plaque purification on YPSC overlay plates (45, 49). Phage resistant E. 501 

coli S17-1 were obtained by plating E. coli cells remaining in pure bacteriophage halo 502 

infection cultures and screening resultant isolates by addition of bacteriophage halo. These 503 

phage resistant E. coli (two strains F & G) were used to purify the B. bacteriovorus angelus 504 

from the originally mixed phage and B. bacteriovorus co-cultures, again using rounds of 505 

plaque purification. The resulting purified B. bacteriovorus angelus produced small plaques 506 

(smaller than those produced by the type strain HD100 under matched conditions) on both 507 

the phage resistant and original phage-sensitive E. coli. 508 

 509 
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Bdellovibrio DNA purification and 16S rRNA sequencing. To phylogenetically characterise 510 

the pure Bdellovibrio strain isolated in the co-culture, Bdellovibrio genomic DNA was 511 

purified from 0.45μm filtered host-dependently grown (before and after separation from 512 

the associated phage) and unfiltered host-independently grown B. bacteriovorus angelus 513 

using the Genelute Bacterial Genomic DNA Kit (Sigma) following the manufacturer’s 514 

instructions. The full-length 16S rRNA gene was amplified from a total of 11 individual 515 

genomic DNA samples using Phusion high-fidelity polymerase (Finnzymes) following the 516 

manufacturer’s guidelines using general bacterial primers 8F (50) and 1492r (51). Purified 517 

PCR products were sent for sequencing at MWG Biotech Ltd, and the full length double-518 

stranded sequence was aligned to that of the Bdellovibrio bacteriovorus type strain HD100 519 

(37). 520 

 521 

Phage preparation and protein identification. Phage preparations were made by addition 522 

of bacteriophage halo (purified as described above and in the results) to a mid-log phase 523 

culture of E. coli S17-1 (pZMR100) and incubated at 29oC. When the optical density (OD) of 524 

the culture at 600 nm dropped to half that of the starting OD, chloroform was added and 525 

the phage particles were collected using PEG precipitation as described for lambda phage 526 

(52). 527 

Phage preparations were run on standard 12.5% acrylamide SDS polyacrylamide gels 528 

(53) to examine their protein content; a single band was excised and analysed by MALDI 529 

QToF MS, and the resulting peptide reads compared to existing sequences in NCBI 530 

databases for the most significant hits. 531 

 532 
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Phage and prey genomic DNA purification and sequencing. Bacteriophage halo genomic 533 

DNA was extracted from the above phage preparations using the Qiagen Lambda Maxi Kit 534 

(Qiagen) following the manufacturer’s instructions from step 6 to step 15. Harvested DNA 535 

was resuspended in a final volume of 1 ml 10 mM Tris, 1 mM EDTA pH 7.5. Restriction-536 

digested fragments of phage genomic DNA were cloned into pUC19 (54) and sent for 537 

sequencing at MWG Biotech Ltd using standard pUC19 primers M13uni(-21) and M13rev(-538 

29). To complete the phage sequence contig, unsequenced regions of cloned fragments 539 

were PCR amplified using KOD high-fidelity polymerase, and purified PCR products sent for 540 

sequencing. A 7 kb contig of phage genomic DNA was fully sequenced, compared to other 541 

phage genomes by DNA and protein BLASTs at NCBI, and deposited in GenBank under 542 

accession number GQ495225.  543 

E. coli S17-1 genomic DNA was prepared using a Sigma GenElute Bacterial Genomic 544 

DNA kit (Sigma- Aldrich Co, St Louis),   from 16 hour overnight cultures of wild type and 545 

phage resistant strains F and G. MinION and Illumina HiSeq platforms were used to 546 

sequence the genome of E. coli S17-1 (4,772,290 nucleotides). Long-read sequences from 547 

the MinION were used as a scaffold for Illumina data consisting of 4.6 million paired-end 548 

sequence reads with lengths of 250 bp. Sequence assembly was performed using CLC 549 

Genomics Workbench version 11.0.1 (Qiagen, Aarhus, Denmark). The genome sequence is 550 

available under GenBank accession number CP040667. Phage resistant genome sequences 551 

were assembled using the E. coli S17-1 chromosome as template from Illumina HiSeq data 552 

composed of 0.8 and 3.5 million paired-end sequence reads of 250 bp for mutants F and G 553 

respectively. These data also included the DNA sequence of plasmid pZMR100 (5,580 554 

nucleotides). 555 

 556 
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Electron microscopy. B. bacteriovorus cells and phage preparations were visualised using 557 

transmission electron microscopy. 15 μl of sample was placed on a carbon formvar grid 558 

(Agar Scientific) for five minutes before being removed and 15 μl of 0.5% Uranyl Acetate 559 

added for 1 minute before the grid was dried. Samples were imaged using a JEOL JEM1010 560 

electron microscope. 561 

 562 

Predation kinetics experiments. Predation kinetics were assayed as described and reasoned 563 

in the results: experimental measurements were taken in triplicate and viable counting was 564 

used to enumerate phage, B. bacteriovorus and E. coli.  Two separate biological repeats of 565 

the experiment were run over 48 hours, with enumerations of all three populations every 566 

two hours by a team of four people. 567 

The starting prey cultures had to be established by experimentation to produce prey 568 

cells that were suitable for both B. bacteriovorus and phage predation. In the lab, B. 569 

bacteriovorus predation is usually studied using stationary-phase prey, whilst phage 570 

predation typically requires exponentially-growing prey; here our setup resulted in late-log 571 

phase prey cells that were preyed upon by both predators. E. coli S17-1 prey cells were pre-572 

grown for 16 hours shaken at 37oC in YT broth. They were added, still in the YT broth, to 100 573 

ml of calcium HEPES buffer (2 mM CaCl2 25 mM HEPES pH 7.8) to give a final OD600nm of 0.75 574 

units (typically 20ml of overnight culture added to 100 ml buffer), resulting in an average 575 

starting E. coli prey population in the experimental cultures of 2.9 × 108 cfu/ml.   576 

Into 100 ml of this prey suspension, 2 ml of an attack-phase culture of B. 577 

bacteriovorus HD100 was added (or 2 ml calcium HEPES buffer to B. bacteriovorus free 578 

controls) giving an average starting B. bacteriovorus count in the experimental cultures of 579 

2.8 × 106 pfu/ml. To this, 20 µl of a pure preparation of the halo-phage was added, giving an 580 
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average starting count in the experimental cultures of 3.7 × 106 pfu/ml. Cultures were 581 

incubated at 29oC with shaking at 200 rpm, and samples taken every 2 hours. 582 

At each timepoint, OD600nm was measured and samples plated onto the appropriate 583 

agar plates for enumeration of E. coli (YT), bacteriophage halo (YPSC with kanamycin at 50 584 

μg/ml, with S17-1 pZMR100 prey) and B. bacteriovorus HD100 (YPSC with phage-resistant 585 

S17-1 as prey).  586 

 587 

Mathematical modelling. A family of ordinary differential equation (ODE) models were 588 

developed to describe the population dynamics. ODEs were ideal as the experimental data 589 

are at the population rather than the individual level and the ODE model can be solved 590 

rapidly (this is important as we had to simulate the model millions of times for the model 591 

selection and parameter inference). Fig. 3 visualizes the variables, their interactions and the 592 

equations of the base model with one prey type. Fig. 4 does the same for the final model as 593 

well as explaining the different model variants. Parameters are defined in Table S1. The full 594 

sets of equations and details on the ODE solver are given in Supplemental Text. Each model 595 

variant was fitted to the experimental data shown in Fig. 2. A Bayesian framework for model 596 

selection and parameter inference was used to obtain estimates of the uncertainty of the 597 

model and parameters. As explicit likelihood functions cannot be derived, an Approximate 598 

Bayesian Computation (ABC) with Sequential Monte Carlo (ABC-SMC) algorithm was used as 599 

described by Stumpf and co-workers (55), for details of the procedure see Supplemental 600 

Text. Figs. S3 and S4 show how the fit improves with decreasing tolerance and Fig. S5 shows 601 

how the accepted parameter ranges narrow down increasingly from the broad priors. The 602 

objective choice of typical parameter sets via PCA is shown in Fig. S7. The open source code 603 
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for running the simulations and the model selection and fitting are available as 604 

Supplemental Code.  605 

 606 

Accession numbers. The nucleotide sequences derived in this work have been deposited 607 

with GenBank. The bacteriophage halo partial genome sequence has accession number 608 

GQ495225.1 https://www.ncbi.nlm.nih.gov/nuccore/GQ495225 and the B. bacteriovorus 609 

angelus full-length 16S rRNA sequence has accession number GQ427200.1 610 

https://www.ncbi.nlm.nih.gov/nuccore/GQ427200.1/.  611 

The E. coli wild type strain S17-1 genome sequence was deposited with the accession 612 

number CP040667.1 https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP040667.1 613 
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Figure Legends 791 

 792 

Fig. 1. Unique halo-ed plaque morphology from which the co-isolated novel B. 793 

bacteriovorus angelus and bacteriophage halo were identified by electron microscopy. (A) 794 

Halo-ed plaques containing both B. bacteriovorus angelus and bacteriophage halo on lawns 795 

of E. coli in YPSC double-layer agar plates. Scale bar = 1 cm. (B) Electron microscopy of B. 796 

bacteriovorus angelus, stained with 0.5% URA pH 4.0. Scale bar = 500 nm. (C) Electron 797 

microscopy of a 0.22 µm filtrate of a predatory culture, showing the presence of phage 798 

 on January 7, 2020 at U
niv of N

ottingham
http://jb.asm

.org/
D

ow
nloaded from

 

http://jb.asm.org/


33 

 

particles with curved tails resembling bacteriophage RTP. Phage were stained with 0.5% 799 

URA pH 4.0. Scale bar = 50 nm 800 

Fig. 2. Kinetics of predation. Measured over 48 hours on late log-phase E. coli S17-1 by 801 

bacteriophage halo alone (green), B. bacteriovorus HD100 alone (red); both bacteriophage 802 

halo and B. bacteriovorus HD100 combined (purple) versus E. coli plus buffer control (blue). 803 

(A) E. coli measured by optical density (OD600nm) (B. bacteriovorus are too small to register at 804 

OD600nm). (B) E. coli viable counts. (C) B. bacteriovorus HD100 enumeration by plaque 805 

counts. (D) bacteriophage halo enumeration by plaque counts. 806 

Fig. 3. Base model with one prey type. (A) Diagram of the model variables (populations and 807 

chemicals) in circles and their positive or negative interactions. The arrow colours match the 808 

colours of the terms in the equations in panel (B) and the roman numerals refer to the list of 809 

processes in the main text. (B) The set of differential equations defining the base model. 810 

Fig. 4. Final model and model variants. (A) Diagram of the final model variables 811 

(populations and chemicals) and their positive or negative interactions. The arrow colours 812 

match the colours of the terms in the equations in panel (B). (B) The set of differential 813 

equations defining the final model. (C) Top level model variants with different prey 814 

phenotypes (models N1, N2, N3, N4). (D) Mid level model variants – (Di) methods of 815 

development of plastic resistance to B. bacteriovorus, (Dii) methods of development of 816 

phage resistance. (E) Low level model variants  – predation rate either saturates at high prey 817 

densities or not (can differ between B. bacteriovorus and phage). 818 

Fig. 5. Hierarchical model selection process. This infers which model variants from Fig. 4 are 819 

best supported by the data (frequency of a variant winning out of 1000). (A) Competition of 820 

models with different number of prey phenotypes. N1: one prey type sensitive to both 821 

predators (NS), N2: two prey types, NS and phage resistant prey (NR), N3: three prey types, 822 

NS and NR and prey with plastic phenotypic resistance to B. bacteriovorus (NP). N4: four prey 823 

types, NS, NR, NP and prey with dual resistance (ND). (B) Competition of models with 824 

different ways of converting between sensitive prey (NS) and plastic resistant prey (NP) but 825 

the same saturating B. bacteriovorus attack rate (Pii) and non-saturating phage attack rate 826 

(Vi). N3-IG-Pii-Vi: NS intrinsically (spontaneously) converts to NP and back conversion is 827 

coupled to growth. N3-S-Pii-Vi: NS conversion to NP is triggered by a signal and back 828 

conversion is spontaneous. N3-I-Pii-Vi: spontaneous conversion both ways. (C) The 829 

combined variant from panel (B) is in the middle and its ‘parent’ variants on either side. N3-830 

SG-Pii-Vi: NS conversion to NP is triggered by a signal and back conversion is coupled to 831 

growth. (D) Model variants, derived from the combined model in panel (C), but differing in 832 

the way the signal is produced. N3-SBG-Pii-Vi: Signal derives from interaction of prey and B. 833 

bacteriovorus only. N3-SG-Pii-Vi: Signal derives from interaction of prey with both predators. 834 

N3-SVG-Pii-Vi: Signal derives from prey interaction with virus (phage) only. (E) Different 835 

ways of generating phage resistance. Phage resistant prey were already present initially or 836 

prey developed resistance de novo or both. (F) Model variants, based on N3-SBG from panel 837 

(D), but differing in attack rate saturation. Pii: B. bacteriovorus attack rate saturates at high 838 

prey density while Pi does not saturate. Likewise with Vii and Vi for the virus (phage). (G) 839 

Mortality of B. bacteriovorus (phage assumed to be stable) was either set to Hespell et al. 840 
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(1974) or fitted by the ABC-SMC method. Less decisive competitions (B-D) were repeated 10 841 

times, see Fig. S6. 842 

Fig. 6. Comparison of experimental data (mean values) with fits of the best model variant 843 

(from Fig. 5). The model was either fitted using (A-D) all experimental data or (E-H) all data 844 

without dual predation and then used to predict the outcome of dual predation (shown in 845 

H). The parameter values for each case are given in Table S1. Experimental data is shown by 846 

symbols, lines represent model simulations. (A-H) Blue: E. coli prey, Red: B. bacteriovorus, 847 

Green: bacteriophage halo, Pink: medium (not experimentally measured). (I-L) Dynamics of 848 

the sub-populations of prey and predators predicted by the model that was fitted to all 849 

data, corresponding to panels (A-D). (I-L) Blue: E. coli prey: solid line – susceptible prey NS, 850 

dotted line – plastic resistant prey NP, dashed line – bacteriophage resistant prey NR. Red: B. 851 

bacteriovorus: solid line – free B. bacteriovorus P, dashed line – bdelloplasts B. Green: 852 

bacteriophage halo: solid line – free bacteriophage V, dashed line – bacteriophage-infected 853 

cells I. Pink: medium. 854 

 855 

 856 

Table Legends 857 

 858 

Table 1. Mutational changes present in the genome sequences of the 859 

bacteriophage resistant mutants 860 

 861 

 862 
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Table 1 

Mutational changes present in the genome sequences of the bacteriophage resistant mutants  

Accession number Gene product 
Nucleotide 

position 
Changes in coding region 

Reading frame 

change 
Mutant 

isolates 

FGH86_13085 KdbD TCS sensor histidine kinase 2690204 G to A substitution D571N F & G 

FGH86_16680 FhuA Ferric hydroxamate transporter/ 

Phage receptor 

3364483 IS4-like insertion inactivation F 

FGH86_16680 FhuA Ferric hydroxamate transporter/ 

Phage receptor 

3365489 IS4-like insertion inactivation G 

FGH86_19640 Paraslipin 4005457 C to T substitution S25F F & G 

FGH86_19645 Ribosome release factor 4005510 A to G substitution - F & G 

Mutations in mutants F and G are presented relative to the reference chromosome sequence of E. coli S17-1 (CP040667). 
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Fig. 1. Unique halo-ed plaque morphology from which the co-isolated novel B. bacteriovorus 

angelus and bacteriophage halo were identified by electron microscopy. (A) Halo-ed plaques 

containing both B. bacteriovorus angelus and bacteriophage halo on lawns of E. coli in YPSC double-

layer agar plates. Scale bar = 1 cm. (B) Electron microscopy of B. bacteriovorus angelus, stained with 

0.5% URA pH 4.0. Scale bar = 500 nm. (C) Electron microscopy of a 0.22 µm filtrate of a predatory 

culture, showing the presence of phage particles with curved tails resembling bacteriophage RTP. 

Phage were stained with 0.5% URA pH 4.0. Scale bar = 50 nm. 

A 

B 

C 

 on January 7, 2020 at U
niv of N

ottingham
http://jb.asm

.org/
D

ow
nloaded from

 

http://jb.asm.org/


Fig. 2. Kinetics of predation. Measured over 48 hours on late log-phase E. coli S17-1 by 

bacteriophage halo alone (green), B. bacteriovorus HD100 alone (red); both bacteriophage halo 

and B. bacteriovorus HD100 combined (purple) versus E. coli plus buffer control (blue). (A) E. 

coli measured by optical density (OD600nm) (B. bacteriovorus are too small to register at OD600nm). 

(B) E. coli viable counts. (C) B. bacteriovorus HD100 enumeration by plaque counts. (D) 

bacteriophage halo enumeration by plaque counts. 
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Fig. 3. Base model with one prey type. (A) Diagram of the model variables (populations and chemicals) in 

circles and their positive or negative interactions. The arrow colours match the colours of the terms in the 

equations in panel (B) and the roman numerals refer to the list of processes in the main text. (B) The set of 

differential equations defining the base model. 
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Fig. 4. Final model and model variants. (A) Diagram of the final model variables (populations and 

chemicals) and their positive or negative interactions. The arrow colours match the colours of the terms in 

the equations in panel (B). (B) The set of differential equations defining the final model. (C) Top level model 

variants with different prey phenotypes (models N1, N2, N3, N4). (D) Mid level model variants – (Di) 

methods of development of plastic resistance to B. bacteriovorus, (Dii) methods of development of phage 

resistance. (E) Low level model variants  – predation rate either saturates at high prey densities or not (can 

differ between B. bacteriovorus and phage). 

Virus 
(phage) 

V S 

Signal - 

P Predator 
(Bdellovibrio) 

+ + + 

I 
Infected  

prey 
B 

Bdelloplast 

+ 
+ 

+ 

+ 

+ 

+ 

+ 

+ + 

Prey Prey Resistant 
NR 

Sensitive 
NS 

Plastic r. 
NP 

+ 
+ + 

+ 

M Medium 

Final model variables and interactions A 

B �ۻ�� = ܁ۼ ۻۼ�− + �ۼ + ۼ,ۻ�  ܀ۼ + ۼ� ۻ + ۻ ۻ� � ��� + ۻ� ��܁ۼ� ��� � = ܁ۼ ۼ,ۻ�ۻۼ� + ۻ + �ۼ ۼ,ۻ�ۻۼ� + ۻ − � �,ۼ� ܁ۼ�� + ܁ۼ + �ۼ + �� ܀ۼ   ۼ

− ��܁ۼ��� − ۼ ܁ۼ܁�� − ���ۼ� ܁ۼۻ� = ���ۼ���− ��܀ۼ� ܁ۼ܁�� + ۼ = ܀ۼ ۼ,ۻ�ۻۼ� + ۻ − � �,ۼ� ܀ۼ�� + ܁ۼ + �ۼ + �� ܀ۼ + ۼ ,܁ۼۻ� �܀ۼ =  �܁ۼ܀�

���� = ��� − �� − � �,ۼ� ܀ۼ�� + ܁ۼ + �ۼ + �� ܀ۼ �  

− � �,ۼ� ܁ۼ�� + ܁ۼ + �ۼ + �� ܀ۼ �   

���� = −����� � + � �,ۼ�܀ۼ�� + ܁ۼ + �ۼ + ܀ۼ + � �,ۼ�܁ۼ�� + ܁ۼ + �ۼ + ���� ܀ۼ = ��� − ���ۼ��� � − ��܁ۼ��� �  ���� = − ����� � + �ۼ��� + ��܁� ܁ۼ��� =
����� �  

 

Final model differential equations (colours match arrows) 

Top level model variants with different prey 

phenotypes (N1, N2, N3, N4) 

 

N1: One prey type, sensitive to both P & V (NS) 
N2: Two prey types, sensitive (NS) and phage 
resistant (NR) 
N3: Three prey types, sensitive (NS), phage 
resistant (NR) and B. bacteriovorus plastic resistant 
(NP) 
N4: Four prey types, sensitive (NS), phage resistant 
(NR), B. bacteriovorus plastic resistant (NP) and 
resistant to both predators (ND) 

C 

E Low level model variants for predation rate 
dependence on prey density for P & V 

No saturation 

Prey density 

P
re

d
a
ti
o

n
 r

a
te

 

Prey density 

P
re

d
a

ti
o
n

 r
a

te
 Saturation due 

to ‘handling’ 
time 
 

Di Mid level models for developing plastic 
resistance and reversion to sensitive 

NS NP 

Intrinsic (spontaneous) conversion 
to plastic resistance (kD) 

I: 
Intrinsic reversion to sensitive (kR) 

NS NP 

Signal (S) triggers formation of plastic 
resistance (�� �) 

S: 
Intrinsic reversion to sensitive (kR) 

NS NP IG: 
Growth-coupled reversion to sensitive 

NS NP SG: 

Dii 

NS NR 

No mutations 

NR initially present 

RI: Resistance initially 

X 

RD: Resistance developing 

NS 
NR 

De novo mutations 

NR initially absent 

RID: both 

NS NR 
De novo mutations 

NR initially present 

Intrinsic (spontaneous) conversion 
to plastic resistance (kD) 

Signal (S) triggers formation of plastic 
resistance (�� �) 

Growth-coupled reversion to sensitive 

Mid level models for developing phage 
resistance and reversion to sensitive 

 on January 7, 2020 at U
niv of N

ottingham
http://jb.asm

.org/
D

ow
nloaded from

 

http://jb.asm.org/


Fig. 5. Hierarchical model selection process. This infers which model variants from Fig. 4 are 

best supported by the data (frequency of a variant winning out of 1000). (A) Competition of models 

with different number of prey phenotypes. N1: one prey type sensitive to both predators (NS), N2: 

two prey types, NS and phage resistant prey (NR), N3: three prey types, NS and NR and prey with 

plastic phenotypic resistance to B. bacteriovorus (NP). N4: four prey types, NS, NR, NP and prey 

with dual resistance (ND). (B) Competition of models with different ways of converting between 

sensitive prey (NS) and plastic resistant prey (NP) but the same saturating B. bacteriovorus attack 

rate (Pii) and non-saturating phage attack rate (Vi). N3-IG-Pii-Vi: NS intrinsically (spontaneously) 

converts to NP and back conversion is coupled to growth. N3-S-Pii-Vi: NS conversion to NP is 

triggered by a signal and back conversion is spontaneous. N3-I-Pii-Vi: spontaneous conversion 

both ways. (C) The combined variant from panel (B) is in the middle and its ‘parent’ variants on 
either side. N3-SG-Pii-Vi: NS conversion to NP is triggered by a signal and back conversion is 

coupled to growth. (D) Model variants, derived from the combined model in panel (C), but differing 

in the way the signal is produced. N3-SBG-Pii-Vi: Signal derives from interaction of prey and B. 

bacteriovorus only. N3-SG-Pii-Vi: Signal derives from interaction of prey with both predators. N3-

SVG-Pii-Vi: Signal derives from prey interaction with virus (phage) only. (E) Different ways of 

generating phage resistance. Phage resistant prey were already present initially or prey developed 

resistance de novo or both. (F) Model variants, based on N3-SBG from panel (D), but differing in 

attack rate saturation. Pii: B. bacteriovorus attack rate saturates at high prey density while Pi does 

not saturate. Likewise with Vii and Vi for the virus (phage). (G) Mortality of B. bacteriovorus (phage 

assumed to be stable) was either set to Hespell et al. (1974) or fitted by the ABC-SMC method. 

Less decisive competitions (B-D) were repeated 10 times, see Fig. S6. 
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Fig. 6. Comparison of experimental data (mean values) with fits of the best model variant (from 

Fig. 5). The model was either fitted using (A-D) all experimental data or (E-H) all data without dual 

predation and then used to predict the outcome of dual predation (shown in H). The parameter values 

for each case are given in Table S1. Experimental data is shown by symbols, lines represent model 

simulations. (A-H) Blue: E. coli prey, Red: B. bacteriovorus, Green: bacteriophage halo, Pink: medium 

(not experimentally measured). (I-L) Dynamics of the sub-populations of prey and predators predicted 

by the model that was fitted to all data, corresponding to panels (A-D). (I-L) Blue: E. coli prey: solid 

line – susceptible prey NS, dotted line – plastic resistant prey NP, dashed line – bacteriophage 

resistant prey NR. Red: B. bacteriovorus: solid line – free B. bacteriovorus P, dashed line – 

bdelloplasts B. Green: bacteriophage halo: solid line – free bacteriophage V, dashed line – 

bacteriophage-infected cells I. Pink: medium. 

 on January 7, 2020 at U
niv of N

ottingham
http://jb.asm

.org/
D

ow
nloaded from

 

http://jb.asm.org/

