36 research outputs found

    Palaeo-dust records: a window to understanding past environments

    Get PDF
    Dust entrainment, transport over vast distances and subsequent deposition is a fundamental part of the Earth system. Yet the role and importance of dust has been underappreciated, due largely to challenges associated with recognising dust in the landscape and interpreting its depositional history. Despite these challenges, interest in dust is growing. Technical advances in remote sensing and modelling have improved understanding of dust sources and production, while advances in sedimentology, mineralogy and geochemistry (in particular) have allowed dust to be more easily distinguished within sedimentary deposits. This has facilitated the reconstruction of records of dust emissions through time. A key advance in our understanding of dust has occurred following the development of methods to geochemically provenance (fingerprint) dust to its source region. This ability has provided new information on dust transport pathways, as well as the reach and impact of dust. It has also expanded our understanding of the processes driving dust emissions over decadal to millennial timescales through linking dust deposits directly to source area conditions. Dust provenance studies have shown that dust emission, transport and deposition are highly sensitive to variability in climate. They also imply that dust emissions are not simply a function of the degree of aridity in source areas, but respond to a more complex array of conditions, including sediment availability. As well as recording natural variability, dust records are also shown to sensitively track the impact of human activity. This is reflected by both changing dust emission rates and changing dust chemistry. Specific examples of how dust responds to, and records change, are provided with our work on dust emissions from Australia, the most arid inhabited continent and the largest dust source in the Southern Hemisphere. These case studies show that Australian dust emissions reflect hydro-climate variability, with reorganisation of Australian dust source areas occurring during the mid to late Holocene. Dust emissions are shown to sensitively map the structure of the Last Glacial Maximum in Australia, demonstrating that this period was associated with enhanced, but also variable dust emissions, driven by changing sources area conditions. Finally we show how dust emissions have responded to the arrival of Europeans and the associated onset of broad-scale agriculture across the Australian continent

    Are CT-Based Finite Element Model Predictions of Femoral Bone Strengthening Clinically Useful?

    Get PDF
    Purpose of Review: This study reviews the available literature to compare the accuracy of areal bone mineral density derived from dual X-ray absorptiometry (DXA-aBMD) and of subject-specific finite element models derived from quantitative computed tomography (QCT-SSFE) in predicting bone strength measured experimentally on cadaver bones, as well as their clinical accuracy both in terms of discrimination and prediction. Based on this information, some basic cost-effectiveness calculations are performed to explore the use of QCT-SSFE instead of DXA-aBMD in (a) clinical studies with femoral strength as endpoint, (b) predictor of the risk of hip fracture in low bone mass patients. Recent Findings: Recent improvements involving the use of smooth-boundary meshes, better anatomical referencing for proximal-only scans, multiple side-fall directions, and refined boundary conditions increase the predictive accuracy of QCT-SSFE. Summary: If these improvements are adopted, QCT-SSFE is always preferable over DXA-aBMD in clinical studies with femoral strength as the endpoint, while it is not yet cost-effective as a hip fracture risk predictor, although pathways that combine both QCT-SSFE and DXA-aBMD are promising

    Global-scale patterns in anthropogenic Pb contamination reconstructed from natural archives

    Get PDF
    During the past two centuries metal loads in the Earth\u27s atmosphere and ecosystems have increased significantly over pre-industrial levels. This has been associated with deleterious effects to ecosystem processes and human health. The magnitude of this toxic metal burden, as well as the spatial and temporal patterns of metal enrichment, is recorded in sedimentary archives across the globe. This paper presents a compilation of selected Pb contamination records from lakes (n = 10), peat mires (n = 10) and ice fields (n = 7) from Europe, North and South America, Asia, Australia and the Northern and Southern Hemisphere polar regions. These records quantify changes in Pb enrichment in remote from source environments. The presence of anthropogenic Pb in the environment has a long history, extending as far back as the early to mid-Holocene in North America, Europe and East Asia. However, results show that Pb contamination in the Earth\u27s environment became globally ubiquitous at the beginning of the Second Industrial Revolution (c.1850-1890 CE), after which the magnitude of Pb contamination increased significantly. This date therefore serves as an effective global marker for the onset of the Anthropocene. Current global average Pb enrichment rates are between 6 and 35 times background, however Pb contamination loads are spatially variable. For example, they are \u3e100 times background in Europe and North America and 5-15 times background in Antarctica. Despite a recent decline in Pb loads in some regions, most notably Europe and North America, anthropogenic Pb remains highly enriched and universally present in global ecosystems, while concentrations are increasing in some regions (Australia, Asia and parts of South America and Antarctica). There is, however, a paucity of Pb enrichment records outside of Europe, which limits assessments of global contamination

    Estimates of late Holocene soil production and erosion in the Snowy Mountains, Australia

    Get PDF
    Soil production in actively uplifting or high precipitation alpine landscapes is potentially rapid. However, these same landscapes are also susceptible to erosion and can be sensitive to changes in climate and anthropogenic activity which can upset the balance between soil production and erosion. The Snowy Mountains, southeastern Australia, are a tectonically stable, low relief, moderate precipitation mountain environment. The alpine area is extensively blanketed by soil that has been subjected to more intensive episodes of erosion during past periods of anthropogenic disturbance and under cold climate conditions of the late Quaternary. In this study, rates of soil development and hillslope erosion were investigated using radiocarbon dating, fallout radionuclides and sediment cores collected from lakes and reservoirs. Estimated Holocene soil development rates were 20-220 t/km2/y. Erosion rates determined from the radionuclides 137Cs and 210Pb were equivocal, due to the inherent spatial variability of radionuclide inventories relative to apparent erosion rates. Estimated average erosion rates over the past 100 years, determined from 210Pbex inventories, were 60 t/km2/y (95% CI: 10, 90). Inventories of 137Cs observed at the same site implied that more recent erosion rates (over the past 60 years) was below the detection limits of the sampling method applied here (i.e. /km2/y). The upper estimate of 90 t/km2/y is comparable to the mean erosion rate estimated using the radionuclide method for uncultivated sites in Australia and is significantly lower than that measured at sites were vegetation cover was disturbed by livestock grazing prior to its exclusion from the alpine area in the 1940s CE. Low erosion and high soil production rates relative to the lowland soils are likely related to extensive vegetation cover, which, in this context, protects soils against erosion and contributes to the formation of organic alpine soils, that rapidly accumulate organic matter by comparison to other soil types

    A landscape-scale approach to examining the fate of atmospherically derived industrial metals in the surficial environment

    Get PDF
    Industrial metals are now ubiquitous within the atmosphere and their deposition represents a potential source of contamination to surficial environments. Few studies, however, have examined the environmental fate of atmospheric industrial metals within different surface environments. In this study, patterns of accumulation of atmospherically transported industrial metals were investigated within the surface environments of the Snowy Mountains, Australia. Metals, including Pb, Sb, Cr and Mo, were enriched in aerosols collected in the Snowy Mountains by 3.5-50 times pre-industrial concentrations. In sedimentary environments (soils, lakes and reservoirs) metals showed varying degrees of enrichment. Differences were attributed to the relative degree of atmospheric input, metal sensitivity to enrichment, catchment area and metal behaviour following deposition. In settings where atmospheric deposition dominated (ombrotrophic peat mires in the upper parts of catchments), metal enrichment patterns most closely resembled those in collected aerosols. However, even in these environments significant dilution (by 5-7 times) occurred. The most sensitive industrial metals (those with the lowest natural concentration; Cd, Ag, Sb and Mo) were enriched throughout the studied environments. However, in alpine tarn-lakes no other metals were enriched, due to the dilution of pollutant-metals by catchment derived sediment. In reservoirs, which were located lower within catchments, industrial metals exhibited more complex patterns. Particle reactive metals (e.g. Pb) displayed little enrichment, implying that they were retained up catchment, whereas more soluble metals (e.g., Cu and Zn) showed evidence of concentration. These same metals (Cu and Zn) were depleted in soils, implying that they are preferentially transported through catchments. Enrichment of other metals (e.g. Cd) varied between reservoirs as a function of contributing catchment area. Overall this study showed that the fate of atmospherically derived metals is complex, and depends upon metal behaviour and geomorphic processes operating at landscape scales

    Attribution of sources to metal accumulation in an alpine tarn, the Snowy Mountains, Australia

    No full text
    This study analyses 1800 years of heavy metal accumulation in a remote alpine lake experiencing long-range atmospheric contamination and additional inputs of Ag from cloud seeding. In comparison to previous work undertaken on peats, lake sediments show limited post-industrial metal enrichment with enrichment factors of Ag: 1.3, Pb: 1.3, Zn: 1.1, Cu: 1.2 compared to Ag: 2.2, Pb: 3.3, Zn: 2.1, Cu: 4.1 for peat. We show this to be the result of substantial fluvial lithogenic flux of metals (92-97% of total metal flux) to the lake. Total annual metal flux to the lake ranges from: Ag: 4-12 ng/cm2/yr to Zn: 3 383-11 313 ng/cm2/yr. As a result, any contribution of cloud seeding to additional enrichment of Ag in lake sediments is considered negligible. Results show that metal enrichment is not necessarily ubiquitous through a landscape. This has implications for predicting the impacts of atmospheric metal pollution to complex environmental systems

    Fixation of fractures of the femoral neck - Reply

    No full text

    Attribution of sources to metal accumulation in an alpine tarn, the Snowy Mountains, Australia

    No full text
    This study analyses 1800 years of heavy metal accumulation in a remote alpine lake experiencing long-range atmospheric contamination and additional inputs of Ag from cloud seeding. In comparison to previous work undertaken on peats, lake sediments show limited post-industrial metal enrichment with enrichment factors of Ag: 1.3, Pb: 1.3, Zn: 1.1, Cu: 1.2 compared to Ag: 2.2, Pb: 3.3, Zn: 2.1, Cu: 4.1 for peat. We show this to be the result of substantial fluvial lithogenic flux of metals (92-97% of total metal flux) to the lake. Total annual metal flux to the lake ranges from: Ag: 4-12 ng/cm2/yr to Zn: 3 383-11 313 ng/cm2/yr. As a result, any contribution of cloud seeding to additional enrichment of Ag in lake sediments is considered negligible. Results show that metal enrichment is not necessarily ubiquitous through a landscape. This has implications for predicting the impacts of atmospheric metal pollution to complex environmental systems
    corecore