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A landscape-scale approach to examining the fate of atmospherically
derived industrial metals in the surficial environment

Abstract
Industrial metals are now ubiquitous within the atmosphere and their deposition represents a potential source
of contamination to surficial environments. Few studies, however, have examined the environmental fate of
atmospheric industrial metals within different surface environments. In this study, patterns of accumulation of
atmospherically transported industrial metals were investigated within the surface environments of the Snowy
Mountains, Australia. Metals, including Pb, Sb, Cr and Mo, were enriched in aerosols collected in the Snowy
Mountains by 3.5-50 times pre-industrial concentrations. In sedimentary environments (soils, lakes and
reservoirs) metals showed varying degrees of enrichment. Differences were attributed to the relative degree of
atmospheric input, metal sensitivity to enrichment, catchment area and metal behaviour following deposition.
In settings where atmospheric deposition dominated (ombrotrophic peat mires in the upper parts of
catchments), metal enrichment patterns most closely resembled those in collected aerosols. However, even in
these environments significant dilution (by 5-7 times) occurred. The most sensitive industrial metals (those
with the lowest natural concentration; Cd, Ag, Sb and Mo) were enriched throughout the studied
environments. However, in alpine tarn-lakes no other metals were enriched, due to the dilution of pollutant-
metals by catchment derived sediment. In reservoirs, which were located lower within catchments, industrial
metals exhibited more complex patterns. Particle reactive metals (e.g. Pb) displayed little enrichment,
implying that they were retained up catchment, whereas more soluble metals (e.g., Cu and Zn) showed
evidence of concentration. These same metals (Cu and Zn) were depleted in soils, implying that they are
preferentially transported through catchments. Enrichment of other metals (e.g. Cd) varied between
reservoirs as a function of contributing catchment area. Overall this study showed that the fate of
atmospherically derived metals is complex, and depends upon metal behaviour and geomorphic processes
operating at landscape scales.
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Abstract 

Industrial metals are now ubiquitous within the atmosphere and their deposition represents a 

potential source of contamination to surficial environments. Few studies, however, have 

examined the environmental fate of atmospheric industrial metals within different surface 

environments. In this study, patterns of accumulation of atmospherically transported industrial 

metals were investigated within the surface environments of the Snowy Mountains, Australia. 

Metals, including Pb, Sb, Cr and Mo, were enriched in aerosols collected in the Snowy 

Mountains by 3.5-50 times pre-industrial concentrations. In sedimentary environments (soils, 

lakes and reservoirs) they showed varying degrees of enrichment. Differences were attributed to 
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the relative degree of atmospheric input, metal sensitivity to enrichment, catchment area and 

metal behaviour following deposition. In settings where atmospheric deposition dominated 

(ombrotrophic peat mires in the upper parts of catchments), metal enrichment patterns most 

closely resembled those in collected aerosols. However, even in these environments significant 

dilution (by 5-7 times) occurred. The most sensitive industrial metals (those with the lowest 

natural concentration; Cd, Ag, Sb and Mo) were enriched throughout the studied environments. 

However, in alpine tarn-lakes no other metals were enriched, due to the dilution of pollutant-

metals by catchment derived sediment. In reservoirs, which were located lower within 

catchments, industrial metals exhibited more complex patterns. Particle reactive metals (e.g. Pb) 

displayed little enrichment, implying they were retained up catchment, whereas more soluble 

metals (e.g., Cu and Zn) showed evidence of concentration. These same metals (Cu and Zn) were 

depleted in soils, implying they are preferentially transported through catchments. Enrichment of 

other metals (e.g. Cd) varied between reservoirs as a function of contributing catchment area. 

Overall this study showed that the fate of atmospherically derived metals is complex, and 

depends upon metal behaviour and geomorphic processes at landscape scales. 

 

Keywords: industrial, metals, Australia, aerosol, pollutants.  

 

1. Introduction 

Industrial metals, which include Pb, Cu, Ni, Cd, Cr, Zn, Ag, Sb and Mo, can now generally be 

considered a ubiquitous part of the Earth’s atmospheric environment. Even in remote locations 

such as Enewetak Atoll in the central western Pacific (Arimoto et al., 1985) and southern New 

Zealand (Marx et al., 2014b), enrichment of industrial metals occurs persistently within collected 

aerosol samples. These metals are typically released to the atmosphere during industrial 

processes including metal production and mining, combustion of fossil fuels, cement production 

and waste incineration (Pacyna and Pacyna, 2001). They are thereafter, transported by the wind 

to be deposited to terrestrial and aquatic environments (Pacyna and Pacyna, 2001).  

 

As a consequence, industrial metals have been found accumulating in the remote-from-source 

locations such as Antarctica (Vallelonga et al., 2002) and Greenland (Hong et al., 1996). 

Typically, however, these studies have focussed on those parts of the landscape which receive 
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high relative rates of atmospheric input such as peat mires (Marx et al., 2010; Shotyk et al., 

2002) and  snow and ice (Hong et al., 2004; McConnell and Edwards, 2008).  Enrichment has 

also been demonstrated in soil (Brännvall et al., 2001; Klaminder et al., 2006) and lake 

sediments (Brännvall et al., 1999; Stromsoe et al., 2013; Wong et al., 1984; Yang et al., 2007) 

although these records maybe more complex due to the influence of catchment and in situ soil 

processes (e.g. Augustsson et al., 2010; Shotyk and Krachler, 2010). Over the last 20 years, an 

increasing body of literature has documented metal enrichment in such settings (peat mires and 

ice) where, in many cases, temporal patterns in metal enrichment directly reflect regional 

industrial histories (e.g. Brännvall et al., 1999; Cooke et al., 2007; Le Roux et al., 2004; Lee et 

al., 2008; Marx et al., 2010). These studies demonstrate the pronounced perturbation of these 

metals that has occurred globally since the Industrial Revolution, while also recording pre-

industrial metal pollution dating from the Bronze Age in Europe and Asia (Brännvall et al., 

1999; Hong et al., 1996; Lee et al., 2008).  

 

These, atmospherically dominated archives, however, tend to record the state of the atmosphere 

and do not necessarily reflect the general extent of industrial metal pollution throughout the 

wider landscape. The significance of atmospheric industrial metals across the wider landscape is 

likely to be more complex, reflecting rates of atmospheric deposition relative to sediment 

generation (by physical, biological and chemical weathering) and sediment transport rates (by 

aeolian, fluvial and colluvial processes). A substantial body of literature has focussed on 

quantifying the inputs, flows and retention of atmospherically derived industrial metals through 

watersheds using a mass balance approach, often in areas experiencing relatively high rates of 

industrial metal enrichment (Landre et al., 2010; Lindberg and Turner, 1988; Watmough and 

Dillon, 2007).  However, despite collected aerosol samples universally recording industrial metal 

enrichment (e.g. Arimoto et al., 1995; Huang et al., 2001; Marx et al., 2014b; Witt et al., 2006) 

there are few studies which examine the relative significance of the deposition of industrial 

metals across a variety of environmental archives (e.g. Landre et al., 2010; Rose et al., 2012; 

Starr et al., 2003; Watmough and Dillon, 2007), where they may potentially concentrate or dilute 

depending on the behaviour of individual metals (e.g. their particle reactivity) and hydrological 

and geomorphic  processes. 
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This paper adopts a landscape-scale approach to examine patterns of industrial metal enrichment 

in the surface environments of the Snowy Mountains Australia. It aims to investigate the 

significance of atmospherically derived industrial metals in different parts of the landscape, 

using enrichment factors to assess the degree of contamination. This study builds on the results 

of two previous studies which examined metal accumulation in peat mires (Marx et al., 2010) 

and tarn-lakes (Stromsoe et al., 2013). However, whereas those studies focused on the 

chronology (historical variability) and source appointment of industrial metals, this study 

compares atmospheric enrichment of metals and their accumulation in various environmental 

archives (peats, lakes, reservoirs and soils) to investigate patterns of dilution and concentration 

across the landscape. Together these provide a perspective on the environmental significance of 

atmospheric pollutants in this region and on the fate of atmospheric pollutants in the surficial 

environment more broadly. 

 

2. Physical setting 

The Snowy Mountains are located in southeast Australia (Fig. 1) and, rising to 2228 m 

(Australian Height Datum - AHD), are the highest region in Australia. They form part of the 

Palaeozoic Lachlan Fold Belt, consisting primarily of granitic and sedimentary rocks with minor 

metamorphics and volcanics also present. The Lachlan Fold Belt forms part of the eastern 

boundary of the Murray-Darling Basin (MDB), a large sedimentary basin (~1 million km
2
) 

covering approximately 1/7 of the Australian continent. Much of the MDB is classified as semi-

arid, with rainfall decreasing westward. The basin is Australia’s most important agricultural 

region, with extensive livestock grazing and cropping, and contains significant mineral 

resources; including the globally important Pb-Zn-Ag mines at Broken Hill (Fig. 1). 

 

The Snowy Mountains experience a cool montane climate. Annual temperatures vary from 18° C 

(summer) to -7° C (winter), with annual precipitation ~2000 mm and prevailing westerly quarter 

winds (BOM, 2014a). Snow is generally present on the peaks for between 3-6 months of the 

year. Despite their alpine setting, the Snowy Mountains can be considered relatively stable in a 

geomorphic context, a result of the intraplate setting of the Australian continent combined with a 

relative lack of recent glacial activity (Barrows et al., 2001). The Snowy Mountains therefore 
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experience low denudation rates (Bishop and Goldrick, 2000; Young and McDougall, 1993) and 

sediment yields that are approximately 1-2 orders of magnitude lower than European alpine areas 

(Stromsoe et al., 2013; Yu and Neil, 1994). 

 

Alpine soils of the Snowy Mountains are classed as Chernic Tenosols characterised by a high 

organic content and consisting of an A horizon overlying a BC horizon (McKenzie et al., 2004). 

The soils are also noteworthy in that they contain a high proportion of dust transported from the 

MDB (Costin et al., 1952; Johnston, 2001; Marx et al., 2011). This is of significance in the 

context of this study because industrial metals are enriched in dusts (Marx et al., 2008; Marx et 

al., 2014b), implying that high concentrations of industrial metals may be present in the soils of 

the Snowy Mountains. Vegetation above the tree line consists of alpine herb fields and heath, 

with ombrotrophic Sphagmun peat mires blanketing extensive areas (Costin, 1972; Martin, 

1999). Below the treeline vegetation consists largely of Snowgum (Eucalyptus pauciflora) 

woodland with peat mires common as valley fills.   

 

 

Figure 1. Locations of sampling sites in the Snowy Mountains. Aerosol samples (triangles) were collected from Talbingo, 
Cabramurra and Perisher. Sediment cores (circles) were collected from peat mires (DCC and USC), Club Lake and Geehi and 
Guthega reservoirs. Soils were sampled along a catena near Guthega Reservoir (see Fig. 4.2). The inset shows the position of 
the Snowy Mountains in eastern Australian, major industrial sites in eastern Australia and likely pollution transporting winds 
(after Marx et al., 2010).  
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3 Anthropogenic disturbance and sources of metals 

The study region is located within Kosciusko National Park from which farming and resource 

extraction are currently excluded; however, alpine areas were used for grazing from the 1860s 

until the mid-1900s. In addition, minor local mining, mainly comprising small-scale alluvial Au 

workings occurred during the mid to late 1800s. Sporadic Ag, Cu and Sn mining continued up 

until the early 1900s but quantities produced were generally too small to be commercially viable. 

A major hydro-electric power generation scheme (The Snowy Mountains Scheme) was 

constructed in the Snowy Mountains from 1949. This involved construction of a series of 

hydroelectric dams and associated infrastructure. A significant skiing industry also occurs within 

the Snowy Mountains. While it is possible that these activities may result in minor additions of 

metals to the environment, previous studies of metal accumulation in sedimentary archives have 

not overtly recorded metals from these sources (Marx et al., 2010).  

 

Since 2004 a cloud seeding operation has been undertaken in the Snowy Mountains in which AgI 

is released into the atmosphere to promote the formation of snow crystals during favourable 

conditions. Between 2004 and 2013 the operation released on average 10.5 kg of elemental Ag 

annually.  This represents a potential additional source of Ag to the Snowy Mountains 

environment. Ag is presented along with the other metals in the current study but will be 

examined further in a subsequent paper.  

 

Marx et al. (2010) found that the major sources of metal pollutants to the Snowy Mountains 

environment were remote sources upwind (west) of the range. These include a number of 

significant mining and metal production operations, most notably the Broken Hill mines and the 

smelters at Port Pirie; coal combustion (coal fired power stations are located around major cities 

upwind of the Snowy Mountains including Melbourne and Adelaide) and agriculture (Fig. 4.1).  
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4 Methods  

4.1 Conceptual approach and sampling 

The sampling strategy followed a multi-archive approach in order to examine the extent of 

industrial metal enrichment in the Snowy Mountains. This involved collecting and dating 

sediment cores from a range of geomorphic and hydrologic settings in the alpine and subalpine 

zone. These included from atmospherically-fed (ombrogenous) peat mires, which in the Snowy 

Mountains are located in upper catchments of the alpine zone, alpine lakes with small 

catchments, which are fed by both direct atmospheric deposition, but also by significant 

terrestrial runoff, and subalpine reservoirs with larger catchments fed overwhelmingly from 

runoff (Fig. 1 and 2 and Table 1). In addition, soil pits were sampled from a range of geomorphic 

positions. Together, these sedimentary archives serve to demonstrate the relative significance of 

atmospheric industrial metals in settings influenced by a range of additional processes including 

weathering, pedogenic processes and alluvial and colluvial sediment transport. In addition, a 

snapshot of industrial metal enrichment in the atmosphere of the Snowy Mountains was provided 

by sampling contemporary aerosols using a network of continuously operating high volume 

particulate samplers (Fig. 1 and 2 and Table 1). These were used to examine the partitioning of 

industrial metals between the atmosphere and the surface environments sampled and to provide 

an estimate of metal deposition to the surface.  

 

Figure 2. Surface sampling sites; A) Upper Snowy (USC) peat mire, B) Duck Creek (DCC) peat mire (arrows show location of 
cores), C) Club Lake, D) Guthega Reservoir (arrows show location of soil sampling sites within the catchment) and E) Geehi 
Reservoir.  
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4.2 Aerosol sampling  

Aerosols were sampled continuously over one year (October 2012-October 2013) at three 

locations (near Talbingo and Cabramurra Townships and near Perisher) across the Snowy 

Mountains using Total Suspended Particulate high volume particulate samplers (Flow Set, Lear 

Siegler Australasia) loaded with polycarbonate membrane filters (nominal 3 µm pore size, 

Sterlitech) (Fig. 1). Filters were replaced at 1-4 week intervals and kept in chemically inert 

plastic bags prior to and following collection. Prior to use, filters were dried at 40⁰ C degrees for 

20 hrs and weighed on a 4 decimal place analytical balance. Following collection, filters were re-

dried and weighed in order to determine dust mass. A sub-sample of dust was then gently 

scraped from the filter using a stainless steel spatula from where it was prepared for trace 

element analysis. A total of 50 aerosol samples were collected across the three sites during this 

study and analysed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). 
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Table 1. Sample details 
        

Name Sample type Environment Location  
Altitude         
(m AHD) 

Catchment 
Core/pit  

depth 
(m) 

Sampling date 
Sampling 
resolution 

Number of 
analysed 
samples 

USC 
Sediment 
core Peat mire -36.463°, 148.299° 1940 Guthega 1 2006 2-5 mm 79 

DCC 
Sediment 
core Peat mire -36.247°, 148.372° 1790 Geehi 0.66 2006 2-5 mm 81 

Club Lake (CL3) 
Sediment 
core Lake  -36.414°, 148.291° 1950 Guthega 0.38 2011 2-5  mm 43 

Geehi Reservoir 
Sediment 
core Reservoir -36.379°, 148.371° 1578 Geehi 0.27 2012 2-5 mm 32 

Guthega 
Reservoir 

Sediment 
core Reservoir -36.305°, 148.316° 1100 Guthega 0.26 2012 2-5 mm 20 

Guthega ridge Soil pit  hill slope -36.360°, 148.373° 1866 Guthega 0.6 2013 100 mm 6 
Guthega mid-
slope Soil pit  hill slope -36.360°, 148.370° 1804 Guthega 0.67 2013 100 mm 5 
Guthega toe-
slope Soil pit  hill slope -36.360°, 148.366° 1665 Guthega 0.46 2013 100 mm 3 

Talbingo Aerosols Atmosphere -35.583°, 148.293° 396 Jounama 
 

Oct 2012-Oct 
2013 1-4 wks 20 

Cabramurra Aerosols Atmosphere -35.939°, 148.379° 1484 Tumut 
 

Oct 2012-Oct 
2014 1-4 wks 12 

Perisher Aerosols Atmosphere -35.394°, 148.394° 1904 Jindabyne   
Oct 2012-Oct 
2015 1-4 wks 24 
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We note that industrial aerosols are often submicron in size, however, these are typically 

scavenged from the atmosphere with larger particulates with which there are transported and 

deposited (Han et al., 2004; Jaffe et al., 1999; Marx et al., 2008). Membrane pore filters are also 

known to efficiently collect  particles substantially smaller than the nominal pore size with 

efficiency increasing substantially with increased filter loading, including over significantly 

shorter sampling intervals than those used here (Kemp and Kownacka, 1987; Yamamoto et al., 

2004). In addition, previous field experiments obtained with using these same filters yielded 

largely identical results to those obtained on a cascade impactor (Marx et al., 2014a), implying 

use of these filters is appropriate in this context. 

 

4.3 Estimation of aerosol/metal deposition flux 

To assess the relative importance of atmospheric industrial metal fluxes to each archive, 

deposition rates were estimated from the atmospheric concentrations using simple models of wet 

and dry deposition (Jacobson, 2005; Jickells and Spokes, 2001). We note that, as with any 

inferential method, there are likely to be considerable uncertainties inherent in these estimates. 

They should therefore be considered as an estimate of the relative significance of atmospheric 

deposition by comparison to surface geomorphic inputs rather than an absolute measure of trace 

element flux.  

Dry Deposition 

Dry deposition was estimated from the aerosol concentration and estimated dry deposition 

velocities for individual aerosol particle sizes according to equation 1. 

𝐹𝑑 = ∑ 𝑉𝑑,𝑖 ∗
𝑛
𝑖=1 𝐶𝑖                                            (1) 

where Fd is the dry deposition flux (ug
 
m

-2 
s

1
), Vd the particle size specific deposition velocity (m 

s
-1

) and C is concentration of that size-class in the atmosphere (ug m
-3

).  

 

Deposition velocities were determined from particle size/mass distribution and mean 

atmospheric conditions during the sampling intervals using Stokes Law according to Jacobson 

(2005).  The dry deposition flux for individual industrial metals was then estimated from the 
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aerosol deposition rates and the individual trace metal aerosol concentrations. A detailed 

description of the estimation method and equations is provided in the supplementary material.  

Wet Deposition 

Precipitation 

Due to the lack of data with which to parameterise more complex processes-based 

micrometerological models, wet deposition (precipitation deposition + cloud water deposition) 

was estimated from simple empirical relationships relating aerosol concentration at ground level 

to cloud water and precipitation concentrations.  Precipitation deposition was calculated by 

estimating the concentration of metals in precipitation from their concentration in the atmosphere 

using a scavenging ratio (Z), defined by the equation 4 (Duce et al., 1991): 

Z = Cp/Ca     (2) 

where Cp is the concentration of the metal in precipitation and Ca its concentration in the 

atmosphere .  A detailed description of the process and a full set of equations is provided in the 

supplementary material. 

 

We note the limitations of this approach, including in the assumption that concentrations at 

ground level representative of the concentration in the air from which the pollutant is being 

scavenged (e.g. in the precipitating cloud) (Barrie, 1985). Thus, scavenging ratios are subject to 

considerable uncertainty and values may vary up to ˜4-6 fold between locations and between 

trace elements (Arimoto et al., 1985; Gao et al., 2003). Previously measured scavenging ratio 

values for pollutant aerosols range most frequently from ˜ 100 – 500 (Arimoto et al., 1985; Duce 

et al., 1991; Kane et al., 1994; Mason, 2013), with extreme values of between 30 (Zn, Cu) 

(Mason, 2013 ) and 1500 (also Cu) (Arimoto et al., 1985). In this study the value of Z is taken as 

the mean of previously published values for pollutant elements, including Cu, Ni, Zn, As, Pb and 

Cd (Z = 380) (Arimoto et al., 1985; Kane et al., 1994; Mason, 2013). We note that there is a 

substantial degree of uncertainty surrounding the selection of this value. Therefore the 

calculation of wet deposition is repeated using upper and lower values of the mean ± the standard 

error of previously published values for Z (Z = 460 and 305 respectively), providing an estimated 

range for the flux of pollutant elements from the atmosphere to the surface. As the relative 
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scavenging efficiency of snow is largely unknown (Wang et al., 2014), a single Z value is 

applied to the total precipitation amount. Likewise, the application of a single mean value to all 

trace elements is necessitated by the dearth of available data for many of the pollutants 

considered in this study. These assumptions should be noted as a potential source of error in the 

deposition estimates. 

 

Cloud water deposition 

Cloud water interception is an important mechanism of trace element deposition to high-

elevation ecosystems where it may account for ≥ 50% of the total wet deposition flux (Herckes et 

al., 2002). In this study cloud water deposition was estimated from the concentration of metals in 

the atmosphere, the scavenging efficiency of cloud water for aerosols, and the deposition 

velocity of cloud water drops according to equation 3. 

 

Fi,cw = Fcw * Ci,cw     (3) 

where Fi,cw is the annual cloud water flux of element i (ug m
-2

 y
-1

), Fcw is the annual cloud water 

hydrologic input (g m
-2

 y
-1

), and Ci,cw (ug g
-1

) is the mean annual concentration of the element in 

cloud droplets. The hydrologic flux (Fcw) was determined from the estimated mean liquid water 

content of the cloud (LWC), the deposition velocity of cloud water droplets (Vc,d)  and the time 

the site spends below the cloud base each year (t). The air equivalent concentration of each 

element in cloud water (Ci,cw) was estimated from the concentration in the element in interstitial 

aerosols (i.e. from the TSP samplers) and the scavenging efficiency of cloud water drops for 

aerosols (E). This approach is outlined in detail in the supplementary material. 

 

The measurement of E (scavenging efficiency), LWC (liquid water content) and t (time below the 

cloud base) was beyond the scope of this study. Values are therefore estimated from previously 

published values for mountain environments elsewhere (E), from limited empirical data available 

for the Snowy Mountains (LWC) and from observation (t). To provide an estimate of uncertainty 

associated with the selection of these values the deposition flux calculations were performed 

using mid, low and high estimates for E, LWC and t.   

 



13 

 

4.4 Peat and lake cores 

Two peat cores were collected from two mires in the Snowy Mountains in 2006. A 1 m core 

(named USC) was collected from the headwaters of the Snowy River (-36.463°, 148.299°  1940 

m AHD) in the southern Snowy Mountains, while a 0.66 m core was collected from Duck Creek 

(DCC)  in the central Southern Snowy Mountains (-36.247°, 148.372°, 1790 m AHD) (Fig. 1 and 

2). A 0.38 m core (CL3) was collected from a Club Lake (-36.414°, 148.291°, 1950 m AHD), a 

tarn in the central southern Snowy Mountains (Fig. 1 and 2) in 2011. Each core was sectioned 

into sub-samples and dated using 
210

Pb and 
14

C. Metals and trace elements were then analysed by 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) on individual sub-samples through 

each core (n = 79, 81 and 43 for USC, DCC and the Club Lake core, respectively). Full details of  

the peat core collection, processing and dating was described in Marx et al., (2010), while the 

Club Lake core was described in Stromsoe et al. (2013). 

4.5 Soil samples 

Samples were collected from within three soil pits excavated along a hillslope cantena in the 

catchment of Guthega Reservoir in 2012 (Fig. 1 and 2). The hillslope had a westerly aspect, an 

average slope >20° and measured approximately 0.5 km in length. Three soil profiles were 

excavated at 1) the top of the hill slope close to the ridge crest (-36.360°, 148.373°, 1866 m 

AHD), 2), the mid-slope (-36.360°, 148.370°, 1804 m AHD) and 3) the toe slope (-36.360°, 

148.366°, 1665 m AHD) respectively, in each case until the saprolite was reached (at 

approximately 0.6 m). Samples were collected at 100 mm depth intervals in each soil pit. They 

were then dried, crushed in a mortar and pestle to homogenise and their trace element 

composition analysed by ICP-MS.  

4.6 Reservoir cores and sample processing  

In 2011 cores were collected from the Guthega (-36.379°, 148.371°, 1578 m AHD) and Geehi (-

36.305°, 148.316°, 1100 m AHD) reservoirs, located in the southern and central Snowy 

Mountains, respectively, using a gravity corer (Fig. 1 and 2). Guthega reservoir was constructed 

in 1955 and has a contributing catchment of 91 km
2
, which is largely within the alpine zone and 

includes Club Lake, the mire from where the USC was collected, and the hillslope from where 

the soil samples were collected. The reservoir has an area of 0.26 km
2
 while its depth varies as a 
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function of precipitation and hydro-electric power generation. Geehi reservoir was constructed in 

1967 and has a contributing catchment area of 148 km
2
, which includes the Duck Creek (DCC) 

mire. Approximately 2/3 of the catchment is within the alpine zone with the reservoir having an 

area of 0.66 km
2   

while again its depth is variable in time. A 0.27 m core was extracted from 

Guthega Reservoir and a 0.26 m core from Geehi Reservoir. Cores were extracted from 

approximately the middle of each reservoir. 

 

In the laboratory the cores were sliced into 2 to 5 mm samples using a stainless steel scalpel. The 

outermost 3 mm of each core was discarded to prevent contamination by smearing of material 

during core collection.  Each sample was dried at 60°C for 36 hours then lightly crushed with a 

mortar and pestle to remove large aggregates. The metal concentration of 32 samples from 

Guthega and 20 samples from Geehi were analysed by ICP-MS. Subsamples from each core 

were dated using 
210

Pb.  

4.7 Trace element analysis 

The analysis of trace elements (including industrial metals) in the aerosol samples, sediment 

samples extracted from the reservoirs cores, soils and samples from the Club Lake core 

(previously presented in Stromsoe et al., 2013) was performed by solution quadrupole ICP-MS 

on a Agilent 7700x instrument at the Department of Earth Sciences University of Melbourne, 

Australia. Sediment samples from the peat cores were analysed at Laurentian University, 

Ontario, Canada on a Varian 810 instrument using the same approach (Marx et al., 2010). 

Analytical details and presentation of rock and soil standards are provided in the supporting 

material and Supplementary Table 2. 

4.8 Dating of sediment cores 

Lake and peat cores were dated using 
210

Pb and 
14

C Accelerator Mass Spectrometry. Results and 

age model construction was previously discussed in Stromsoe (2013) and Marx et al., (2010), 

respectively. Sediment samples from both the Guthega and Geehi reservoirs were dated using 

210
Pb at the Institute for Environmental Research, Australian Nuclear Science and Technology 

Organisation (ANSTO) by Alpha spectrometry. Dating by 
210

Pb was performed by measuring 

210
Po activity, the granddaughter of 

210
Pb, with which it is assumed to be in secular equilibrium. 
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Supported 
210

Pb was determined by measuring 
226

Ra, with unsupported  
210

Pb calculated from the 

difference between supported and total 
210

Pb activity (Harrison et al., 2003).  

 

Unsupported 
210

Pb activities in both Geehi and Guthega reservoirs cores were relatively high 

(supplementary Table 3 and Fig. 4.3). Unfortunately, the coring equipment was not able to 

collect more than 0.26 m length core at Geehi and 0.27 m at Guthega, therefore unsupported 

210
Pb activities could not be determined below these depths. Five samples between 0 and 155 

mm depth were analysed from the Geehi core while seven samples between 0 and 200 mm depth 

were analysed from the Guthega core (
210

Pb activities are presented in supplementary Table 3). 

 

 

Figure 3. The average trace element composition of aerosols collected during this study normalised against MUQ (MUd from 
Queensland Kamber et al., 2005). Note As, Mo, Cd and Sb data are from Marx and Kamber (2010); Ag and In data from the 
Perisher core which predates industrial activity and is considered of local sediment chemistry (see Marx et al., 2011). The 
abundance of metals with concentrations significantly greater than MUQ are indicated in grey.  

5. Results 

5.1 Atmospheric aerosol concentrations and industrial metal enrichment 
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Mean aerosol concentrations over the Snowy Mountains, as measured by the three high volume 

particulate samplers during 2012-2013, were 7.8 ± 0.8 µg m
-3

. Concentrations were lower during 

the austral winter (June-August) (4.6 ± 0.2 µg m
-3

) relative to the rest of the year (8.9 ± 0.8 µg m
-

3
). These aerosols included industrial metals, natural dust and organics. 

 

To identify which metals are perturbed within the atmosphere of the Snowy Mountains, i.e., have 

concentrations higher than would be expected naturally, the average trace element concentrations 

of all aerosol samples were plotted normalised against MUQ (MUd from Queensland; Kamber et 

al., 2005) (Fig. 3). MUQ is a compilation of alluvial sediment samples from 25 Queensland 

Rivers draining the major geologic units of eastern Australia. It is therefore representative of the 

average background (unpolluted) chemistry of rocks and sediments in eastern Australia in 

addition to average global composition of Upper Continental Crust. Thus it is also broadly 

representative of the composition of mineral dust in eastern Australia. A number of metals 

exhibited high concentrations with respect to continental crust, implying their concentration has 

been influenced by industrial activity. These were Cr, Ni, Cu, Zn, As, Mo, Ag, Cd, Sn, Sb and 

Pb. We note, however, the surface sediments which constitute MUQ may also be enriched in 

some industrial metals (see Kamber et al., 2010). Normalisation of aerosols against MUQ may 

therefore mask enrichment in some metals, although it still serves to show that a number of 

metals are enriched even with respect to the general perturbation of surface sediment 

geochemistry by industrial activity.  

 

The atmospheric concentrations of individual metals were estimated from the product of the total 

aerosol mass per unit atmosphere and the elemental composition of sampled dust.  Average 

atmospheric concentrations of known pollutant metals were generally < 1000 pg m
-3

 and ranged 

from 1 pg m
-3

 (Ag) to >3500 pg m
-3

 (Zn) (Table 2).  Zinc, however, was present in high 

concentrations in blank analyses of the polycarbonate membrane filters (Marx et al., 2014a). 

Consequently, some of the total Zn concentration in this context is likely to be derived from the 

filter itself. Other metals present in concentrations >100 pgm
-3

 include Cr, Ni, Cu and Pb (Table 

2). 
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Table 2. Average atmospheric industrial metal atmospheric 
concentrations for selected studies (pg m-3) 

Location This study# 
Alpine New 
Zealand*1 

West Coast 
New 

Zealand*2 
Antarctica#3 Samoa#4 

Cr 940 925 - 433 (300-570) - - 

Co 77 74 30.7 ±23.9 - - 
0.37 

3.0 

Ni 539 946 
371.4 

±313.9 
208 (140-270) - - 

Cu 388  203 192 ±203.7 570 (400-750) 1 5.6 13 2.6 

Zn 3611 3604 - 710 (490-940) 6.1 4.8 64 2.2 

As 118  80 5.6 ±7.0 - - - 

Mo 14 ±8 14.6 ±13.2 - - - 

Ag 1 1 4.2 ±6.8 - - 11 3 

Cd 5 7 17.8 ±19.9 7 (5-9) 0.06 0.06 - 

Sn 80 167 - - - - 

Sb 17 10 53.2 ±23.4 4 (2-5) - 
0.19 

1.1 

W 17 15 - - - - 

Pb 226  128 163 ±136.6 420 (290-560) 4.7 3.2 16 2.4 
#
Mean and standard deviation 

    
*
Mean and range (in parentheses ) 

   
1
Marx et al., (2014a) 

    2
Marx et al., (2008) 

    3
Dick et al., (1991) 

    4
Arimoto et al., (1987) 

     

 

Given the potential enrichment of MUQ surface sediments, a more accurate approach for 

calculating metal enrichment in the aerosols is to use mineral dust sediments which were buried 

prior to the onset of industrial activity in Australia in the USC core, i.e. prior to ~1850 (Marx et 

al., 2011 and Fig. 4). The enrichment factor can then be calculated from equation 4 (Arimoto et 

al., 1990; Shotyk, 2002): 

EF = (Cm/Ccex)/(Cm/Ccnatavg)                                               (4) 

where EF is the enrichment factor, Cm/Ccex is the ratio of a metal whose concentration is 

suspected of being perturbed (Cm) in the aerosol samples to that of a conservative element (Cc), 
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and Cm/Ccnatavg is the average ratio of Cm to Cc in the pre-pollution (pre-1850) section of the 

USC core. To reduce the possibility that the behaviour of the conservative element may 

influence the metal EF, the average EF values using four conservative elements (Ta, Ga, Sc and 

Ti) were calculated (see Marx et al., 2014b). 

 

Figure 4. Antimony (Sb) enrichment (EF) and excess metal (Metalex) concentrations in peat mires (USC and DCC panel A) and 
Club Lake (panel B). Note for plotting convenience excess Sb in DCC is shown converted to the same number of data points as 
in USC (by averaging). In panel B, depth is plotted as a non-linear timescale and dates (AD) are indicated.  

 

The average EF for metals in aerosols is shown in Figure 5a. Metals were enriched in aerosols in 

the order Ni (2.6) < Pb (3.5) < Co (3.6) < Cr (4.8) < Ag (12) < Mo (12) < Cu (13) < Sn (16) < As 

(24) < Cd (27) < Sb (48). EF in the aerosols varied seasonally, increasing during the austral 

winter and early spring (illustrated for Cr, Pb and Sb in Fig. 4.6). Wintertime EF were on 

average 3 times those of summer and coincided with reduced atmospheric dust concentrations. 

This pattern is consistent with the regional climatology (Chubb et al., 2011). During the austral 

winter southern Australia experiences an increase of west to south westerly winds resulting in 
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increased precipitation and reduced dust entrainment (McTainsh et al., 1998). The implication of 

this is increased relative transport of industrial metals over naturally derived metals and crustal 

elements contained in dust occurs during the winter, i.e. there is less atmospheric dust. 

 

 

Figure 5. A) Mean enrichment factors (EF) for industrial metals in Snowy Mountains aerosols between 2012/2013. B) Mean 
excess industrial metal (Metalex) concentrations in the same aerosols. In both panels bars indicate standard errors.  

 

 

Figure 6. Time series of Cr, Pb and Sb enrichment (EF) in Snowy Mountains aerosols (September 2012-October 2013).  
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Excess atmospheric metal concentrations, i.e. the pollution derived component, were calculated 

from equation 5: 

                                                        Metalex = Cm-(Cm/EF)                                           (5) 

 

The Metalex concentrations range from (mean ± standard error) <1 pg m
-3

 ± < 1 (Ag) to 660 ± 

125 pg m
-3 

(Cr) (Fig. 4.5b). The difference between EF and Metalex reflects the relative natural 

concentration of each metal in the atmosphere, i.e. its relative concentration in upper continental 

crust. Consequently, for example Sb, which was highly enriched (EF = 48) was present at < 20 

pg m
-3

,
 
7 times less than the concentration of Pb (110 pg m

-3
) with an EF of 3.5 (Fig. 5a and b). 

This is an important distinction in this context because the potential for contamination of the 

surficial environment by atmospheric pollution may be determined not only by the degree of 

enrichment, but also by the mass of industrial metal deposited to the surface. 

 

In contrast to EF, Metalex did not display a clear seasonal pattern (illustrated for Cr, Pb and Sb in 

Fig. 7) (although some wintertime enrichment is still apparent). This is explained by variability 

in atmospheric concentrations of industrial metals relative to natural dust.  

 

 

Figure 7. Time series of excess (Metalex) Cr, Pb and Sb concentrations in Snowy Mountains aerosols (September 2012-
October 2013).  
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5.2 Aerosol and industrial metal deposition 

The estimated average aerosol deposition rate during the sampling period (2012-2013) was ˜30 g 

m
-2

 y
-1

. The flux for individual industrial metals, i.e. those enriched relative to MUQ (Fig. 3), 

varied by two orders of magnitude  (Table 3), the range of enrichment being controlled by a 

combination of the industrial emission load for a particular metal and its natural concentration 

within upper continental crust. Estimated deposition flux of enriched industrial metals (mid 

estimate and (range)) ranged from 5 (5-10) µg m
-2 

y
-1 

for Ag to a maximum of 3995 (3600-7910) 

µg m
-2 

y
-1

 for Cr (Table 3). Notably, several potentially toxic metals are estimated to be 

deposited to the soils, lakes and peats of the Snowy Mountains at rates greater than 1,000 µg m
-2 

y
-1

, including Cr, Cu, Ni and Pb (Table 3).   

 

Table 3. Estimated total and excess 
metal flux from the atmosphere to the 
surface of the Snowy Mountains 

  
Total Flux (µg m-2 

y-1) mid (range) 
Excess Flux (µg 

m-2 y-1) 

Cr 3995 (3600-7910) 
2980 (2700-

5730) 

Co 310 (280-630) 190 (170-370) 

Ni 2590 (2365-4835) 
1150 (1085-

1785) 

Cu 2370(1885-3665) 
1830 (1690-

3200) 

As 490 (440-985) 460 (420-930) 

Mo 60 (55-120) 55 (50-105) 

Ag 5 (5-10) 5 (5-10) 

Cd 25 (20-45) 20 (20-40) 

Sn 305 (275-640) 295 (265-605) 

Sb 75 (70-145) 75 (70-145) 

W 65 (60-135) 25 (25-50) 

Pb 1095 (1000-2035) 670 (625-1136) 
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A proportion of total metal flux is derived from natural sources, i.e. from mineral dust.  

Therefore, a more accurate assessment of the contribution of industrial pollutants to the Snowy 

Mountains is provided by the Metalex flux (equation 5). Estimated Metalex flux to the Snowy 

Mountains as a proportion of the total flux (i.e. natural + industrial) ranges from 35-45% for Ni 

(where excess flux is 1150 (1085-1785) µg m
-2

y
-1

) to 98% for Sb (where excess flux 75 (70-145) 

µg m
-2

y
-1

) (Table 3). Metalex fluxes were highly variable between the different industrial metals, 

ranging from 5 (5-10) (Ag) to 2980 (2700-5730) (Cr) µg m
-2 

y
-1

.  Excess Cr, Cu, Ni and Pb were 

estimated to be deposited at rates close to, or greater than, 1000 µg m
-2 

y
-1

 implying prima facie 

that these metals may have the greatest impact on the Snowy Mountains environment (Table 3). 

5.3 Industrial metal accumulation in peats and lakes 

The results of metal accumulation and enrichment in the peat mires and Club Lake have been 

described in detail elsewhere (Marx et al., 2010; Marx et al., 2014c; Stromsoe et al., 2013) and 

are summarised in brief here only. The peat mires and Club Lake represent different examples of 

natural sedimentary archives which serve to show how metals are being incorporated into the 

surficial environment. For both the peat cores and the lake core, EF were calculated by 

comparing the chemistry of the pre-industrial section of each core (pre-1850) with the industrial 

section of the cores using equation 4. 

 

Both peat cores displayed clear temporal trends in metal enrichment that broadly reflected the 

history of industrial activity in southern Australia, i.e. changing EFs through time are primarily a 

function of changing industrial activity (Marx et al., 2014b). Metal enrichment commenced in 

the peat cores at approximately 1890, with more significant enrichment occurring after 1980 

(shown for Sb by way of example in Fig. 4A). In the figure, both peat mires record a sharp rise in 

Sb enrichment beginning at c.1890. After 1940 the EF becomes stabilised at approximately 3.5 

in USC and 2 in DCC. The USC mire shows a further increase in EF to c. 4 after 1980 which 

continues to the present. Excess Sb (metalex) in both cores generally reflect these trends, although 

metalex in DCC decreases after c. 1960 implying a reduction in industrial Sb deposition at that 

site.  
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The pre-1980 section of the core, therefore, reflected historical atmospheric industrial metal 

concentrations (Marx et al., 2010).  By comparision, metal behaviour in the upper most section 

of the peat cores (post-1980) can be considered broadly comparable with the composition of the 

contemporary atmosphere (i.e. relatively, though not precisely, contemporaneous with the 

collected aerosol samples). The same suite of metals that were found enriched in the aerosols 

samples (Pb, Ag, Cr, Mo, Cd,  Co, Cu, Ni, Sb, As, Zn and Sn) were also enriched in 

ombrotrophic (rainfall fed) peats (Fig. 8). 

 

 

Figure 8. Industrial metal enrichment (EF) in peat mires post-1980 plotted beside aerosol enrichment (2012/2013) for 
comparison.  

 

Average industrial (post-1850) EF were 2.1 and 1.7 in USC and DCC respectively, while  post-

1980 EF were 3.0 in and 2.2, respectively, meaning industrial metal concentrations have 

increased toward the present. Metals with average industrial EF > 2 in one or both cores were 

Mo, Cd, Sb, Cu, As, Pb,  Ni, Co, Sn and Ag (EF are shown in Fig. 8). Metals were typically less 

enriched in post-1980 section of the peat cores by comparison to the collected aerosols by 

approximately 5 times in the USC and 7 times in the DCC (Fig. 8). However, the most highly 

enriched industrial metals in aerosols samples, i.e. those with EF > 10 (Sb, Cd, As, Sn, Cu, Mo, 

Ag) were generally also the most highly enriched metals in the peat cores. 
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EF were generally higher in the USC by comparison to the DCC by an average of 1.5  0.3 

times. This implies the mire from where the USC was collected receives higher atmospheric 

input and/or lower input of additional mineral matter (alluvial, colluvial sediment or local dust) 

than the Duck Creek mire, i.e. there is less dilution of the atmospheric signal. An exception to 

this general pattern was the behaviour of Ag and Ni where the EF were close to unity between 

the two mires, while Co was typically more enriched in DCC, displaying only minor enrichment 

in USC. Metalex concentrations were similarly typically higher in USC (e.g. Fig. 4), although at 

both sites they were more variable in comparison to EF through time. This difference is 

presumably largely a function of variability in the source(s) of mineral material deposited to the 

mires, including variability in the sources and relative contributions of long-range dust (e.g. see 

Marx et al., 2014c) and local sediment input. 

 

By contrast with the studied peat mires, most industrial metals shown to be enriched in aerosols 

were not enriched within Club Lake sediments (Fig. 9). Industrial EF  were ~1, i.e. there was no 

enrichment in industrial metals, for Cr, Co, Ni, Cu, Zn and Sn.  Although some metals showed a 

more significant increase post-1980, average enrichment factors for most metals across this 

period were also ~1. Consequently, EF were on average 10 times less than observed in the 

aerosol samples. Relatively high rates of local unpolluted sediment generated from the sparsely 

vegetated cirque walls behind the tarn were concluded to be swamping input of pollutant metals 

resulting in comparatively low enrichment of lake sediments (Stromsoe et al., 2013).  

 

In exception to the general behaviour of industrial metals, several industrial metals with low 

natural abundance, including Sb, Mo, As and Cd, displayed more substantial enrichment in Club 

Lake (mean post-1980 EF 2.1, 1.6, 1.3 and 1.4, respectively) (e.g. see Figure 4 and  9). The 

behaviour of Sb is shown by way of example in figure 4B. Antimony EF in Club Lake increases 

sharply after 1880. They then stabilise at c.1940 at EF=2, with the uppermost samples exhibiting 

a further increase in EF. Overall the chronology of Sb EF in Club Lake was comparable to that 

recorded in the peat mires, however metalex concentrations were significantly lower in Club Lake 

(Fig. 4). Arsenic and Mo displayed similar behaviour to Sb, however Cd showed enrichment in 
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some samples but with greater variability though time. Silver also displayed minor enrichment 

over this time with EF reaching approximately 1.2 in the uppermost samples from the core.    

 

 

Figure 4. Industrial metal enrichment (EF) in Club Lake post-1980 plotted beside aerosol enrichment (2012/2013) for 
comparison. 

 

4.5.4 Industrial metals in soils 

Enrichment factors for the three soil profiles were calculated (using equation 4) relative to 

sediment samples from a core extracted in the Perisher Valley (Fig. 1). These sediments predate 

industrial activity and are considered representative of locally transported and eroded sediment in 

the Snowy Mountains (Marx et al., 2011). Three main EF patterns were apparent in the soil 

profiles. First, Pb and Zn showed apparent generalised enrichment throughout each profile, with 

no clear change in EF with depth (e.g. Pb in Fig. 10A). Second, Cu, Ni and Cr showed 

enrichment at the bottom of each soil profile, however EF decreased toward the soil surface (e.g. 

Cu Fig. 11A). Third, Mo, Cd, Sb and Ag showed no enrichment at the base of each soil profile, 

but recorded a pronounced up-profile increase in EF (e.g. Mo in Fig 10A). These metals also 

recorded the highest maximum EF. Arsenic patterns were inconsistent between the three soil 

profiles. 
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The age of the soil profiles is unknown, it is very unlikely, however, that the base of each soil 

profile, post-dates industrialisation in Australia, which accords with the onset of industrial 

enrichment in the peat mires (see Fig. 4 and Marx et al., 2010). Apparent enrichment of metals in 

the base of the profiles (Fig. 10A) is therefore an artefact of relatively low concentrations of the 

conservative elements used to calculate the EF factor (Sc, Ti, Ga, and Ta) in the soils relative to 

the Perisher sediments, e.g. the raw Pb concentrations in the ridge top soil are actually highest in 

the surface soil as opposed to the reverse pattern in EF shown in Fig. 10A. Calculating EF 

relative to element concentrations in the lower most soil sample for each profile therefore 

removes this apparent enrichment in the base of the soil profiles (e.g. Fig. 10B).  

 

The observed low concentrations of conservative trace elements (e.g. Sc, Ti, Ga and Ta) in the 

base of the profiles arise from the unusual way alpine soils form in the Snowy Mountains. They 

are fed, at least in part, by dust deposition (Costin et al., 1952; Marx et al., 2011; McKenzie et 

al., 2004), the rates of input of which may exceed rates of physical and chemical weathering. 

Calculation of accurate EF relies upon the conservative behaviour of the normalising element(s) 

(Marx et al., 2008). In this case, however, the concentration of conservative elements varies 

markedly through the soil profiles, presumably as a function of relative dust input versus 

weathering loss. Comparing the change in relative industrial metal concentration through the 

profile may therefore further elucidate metal behaviour in the soils. 

 

When the relative change in metal concentration through the soil is plotted, Mo, Cd, Sb and Ag 

again increase toward the top of each profile (e.g. shown for Mo Fig. 10C). Most of the other 

elements, however, show variability between the three soil profiles (e.g. as shown for Pb in Fig. 

10D, profile locations shown in Fig. 2). Industrial metal concentrations in the uppermost (ridge-

crest) soil profile increase toward the profile surface. In mid-slope profile, concentrations decline 

in the middle of the profile before recovering toward the top of the profile (e.g. Fig. 10D). 

However, whereas Cr, Pb and Sn reach unity at the surface, Co, Zn and most significantly Cu 

show relative concentration depletion (plot not shown). In the toe-slope profile the 

concentrations of most metal decline toward the surface (with the exception of Mo, Cd, Sb and 

Ag) (e.g. Pb in Fig. 10D). 
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Figure 10. Industrial metal patterns in Snowy Mountains soils. A) Lead (Pb), Cu and Mo enrichment (EF) in the ridge-crest 
profile. EF were calculated relative to the Perisher core sediments. B) Copper (Cu) and Pb in the ridge-crest profile 
normalised to the deepest soil profile sample. C) Molybdenum (Mo) enrichment in each soil profile normalized to the 
deepest soil profile sample. D) Relative change in Pb concentration in each soil profile.  
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The overall impression, is, Mo, Cd, Sb and Ag show strong evidence of enrichment in the soils. 

Other industrial metals show some evidence of enrichment in the ridge-crest soil profile, whereas 

they may be depleted in the mid-slope and toe-slope profiles. Of these metals Cu shows the most 

significant degree of loss, implying it may be preferentially removed from the soils in this 

environment.  

5.5 Age structure of the Reservoir cores 

Unsupported 
210

Pb activities in both Geehi and Guthega reservoirs cores were relatively high 

(Supplementary Table 3 and Fig. 11).  In order to construct robust age models using 
210

Pb it is 

necessary that 
210

Pb activities decrease consistently down core. In the Geehi Reservoir 

unsupported 
210

Pb activities did not exhibit a decreasing profile in the top 100 mm. However, 

210
Pb activity did decrease significantly between the data points at 95 and 155 mm depth from 

364 Bq kg
-1 

to 215 Bq kg
-1 

(Fig. 11A). An estimate of sediment accumulation rates (0.08 g cm
-2

 

year
-1

) was calculated from these two points using the Constant Initial Concentration (CIC) 

model (Robbins and Edgington, 1975). Applying this mass accumulation rate to the whole core 

allowed sediment ages to be calculated (Supplementary Table 3, Figure 4.11). Due to the lack of 

reliable 
210

Pb data, these ages can be considered approximate only.  

 

Figure 11. Unsupported 210Pb activity profiles in cores collected from A) Geehi and B) Guthega reservoirs. Sediment ages 
(years) and regions where sediment mixing is likely are indicated on each panel.  
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In the Guthega Reservoir core unsupported 
210

Pb activities exhibited a decreasing profile 

between 30 and 145 mm depth only (Fig. 11B). These data were used to estimate a mass 

accumulation rate for the whole core (0.26 g cm
-2

 year
-1

), from which sediment ages were 

calculated (Supplementary Table 3, Fig. 11). 

 

The unsupported 
210

Pb depth typology (Fig. 11) for both reservoir cores, i.e. unsupported 
210

Pb 

concentrations do not consistently decrease with depth, implies that either sediment in the 

reservoirs has experienced post depositional mixing, or sediment of differing age/origin (with 

variable 
210

Pb activity) has been deposited in the reservoirs at different times. In Geehi Reservoir 

results indicate sediment mixing and/or a complex origin of sediment, at least above 100 mm 

depth, while in Guthega Reservoir, these effects have influenced sediment above 30 mm depth 

and between 145 and 190 mm depth. As a consequence, calculated ages (which are shown in 

figure 12) must be treated with caution. In addition, or alternatively, the 
210

Pb results also 

indicate the reservoirs may not record a true temporal deposition history, i.e. based on the basal
 

210
Pb ages Guthega is missing approximately 30 years of sediment. 

 

 

Figure 12. Lead (Pb) and Cu enrichment (EF); in A) Geehi and B) Guthega reservoirs cores. Ages (years AD) and regions of 
sediment mixing are indicated in each panel 
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5.6 Industrial metal accumulation in reservoirs  

In contrast to the peats mires, which receive predominately atmospheric input, and to Club Lake, 

which has a small contributing catchment area (0.015 km
2
), the reservoirs have significantly 

larger catchments (91 and 141 km
2
 for Guthega and Geehi, respectively). They therefore receive 

significant catchment input and serve to show how industrial metals are being transported 

through, and accumulating in the wider surficial environment. 

 

Due to difficulties in establishing the precise age of deposited sediment, EF values were 

calculated from the average enrichment across all samples analysed in the two cores. The 

reservoirs do not contain pre-industrial sediment (they were constructed after 1850). Therefore 

metal enrichment was calculated relative to sediment from the core extracted in the Perisher 

Valley (Marx et al., 2011), using equation 4. 

 

Despite uncertainty in the age of the reservoir sediments, calculated EF values for both 

reservoirs clearly demonstrate that many industrial metals found to be enriched in both the 

aerosol samples and the peat mire sediments (and to a lesser extent the Club Lake sediment) 

were not enriched in reservoir sediments.  These were Pb (e.g. Fig. 12A), Ni, Cr and Sn in Geehi 

reservoir and Ni, Cr and Co in Guthega reservoir (Fig. 13).  A number of other metals, however, 

showed more substantial enrichment. In Geehi reservoir As, Cd, Ag, Mo and Cu (e.g. Fig. 12A) 

are enriched by an average of 5.9, 6.4, 4.0, 3.6 and 3.3 times respectively, while in Guthega 

Reservoir they are enriched by 2.7, 3.8, 3.2, 2.5 and 1.8 times respectively (Figs. 12 and 13).  
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Figure 13. Industrial metal enrichment (EF) in reservoirs (Geehi and Guthega) plotted alongside aerosol enrichment 
(2012/2013) for comparison.  

 

6 Discussion 

In the following sections the results are discussed from the input of industrial metal (via enriched 

arosols) through the various studied landscape repositories. These include the rainfall fed peat 

mires and the alpine tarns and soils, located in the upper parts of catchments and soils and 

reservoirs located lower in the same catchments. Differences in relative enrichment between the 

source aerosols and each surface repository provides an opportunity to examine how industrial 

metals are being incorporated into and transported through the environment. 

6.1 Metal enrichment in aerosols; contributing sources and comparisons 

Aerosols in the Snowy Mountains were significantly enriched in pollutant metals known to be 

perturbed in the global atmosphere due to emissions from stationary fossil fuel combustion, (the 

primary source of Cr, Sb, Sn, Mo), non-ferrous metal production (the primary source of As, Cd, 

Cu, Pb,  Ni, Zn, Ag) and fertilizer application (an additional source many metals including As, 

Cd, Cu, Pb, Ni and Zn) (Pacyna and Pacyna, 2001; Rauch and Pacyna, 2009).  Patterns in aerosol 

metal enrichment evident in this study are broadly similar to that previously found within peat 

mires in the Snowy Mountains, where metal pollutants were shown to derive primarily from 

mining, metal production and coal combustion within the south-eastern Australian airshed  
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(Marx et al 2010). The same suite of industrial metals present in the peat mires were enriched in 

the aerosols samples, although the relative order and magnitude of enrichment differed. The 

industrial metals most enriched in aerosols were Sb, Cu, As, Cd. These have the highest 

contemporary emission rates from industrial sources within Australia (NPI, 2014) relative to 

their natural preindustrial concentrations, again implying that aerosol enrichment in the Snowy 

Mountains reflects regional industrial pollution.  

 

The concentration of pollutant metals in the atmosphere over the Snowy Mountains is generally 

within the same order of magnitude as that previously reported for an alpine site in New Zealand 

(Marx et al., 2014b) but approximately 1-2 orders of magnitude greater than concentrations 

recorded at more remote Southern Hemisphere sites, including Samoa (Arimoto et al., 1987) and 

Antarctica (Dick, 1991) (Table 2), reflecting the relative proximity of the Snowy Mountains to 

industrial emission sources.  

6.2 The atmospheric contribution of industrial metals 

In the absence of local catchment sources, deposition of aerosols enriched in industrial metals 

represents the most significant source of contamination to the Snowy Mountains. The estimated 

total aerosol flux to the Snowy Mountains during 2012-2013 was ~30 g m
-2 

y
-1

.  This value is 

similar, albeit slightly lower, than the 1980-2006 dust deposition rate of 49 g m
-2 

y
-1

 estimated in 

the USC peat using a mass-balance geochemical model (Marx et al., 2014c).  . The slightly lower 

deposition rate reported here may reflect changing dust transport rates in response to changing 

climate conditions across south eastern Australia.  The two years leading up to the 2012/13 

sampling periods were among southern Australia’s wettest (BOM 2014), implying less 

favourable conditions for dust entrainment, i.e. increased soil moisture and vegetation cover. In 

addition, average dust deposition in the peat mire was enhanced by prolonged drought in the 

early to mid-2000s and significant drought during strong  El Niño events in 1982-83 and 1987 

when large dust storms occurred (Marx et al., 2014c; McTainsh et al., 1989; Raupach et al., 

1994). 
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Deposition flux in the Snowy Mountains is above the global range (1-25 g m
-2 

y
-1

) shown for 

sites at intermediate distance (10-1000 km) from significant regional (North America, South 

Africa, South America and Australia) dust source areas (Lawrence and Neff, 2009). This is 

consistent with Australia being arguably the largest dust source in the Southern Hemisphere 

(Shao et al., 2011) with the lower Murray Darling Basin, upwind of the Snowy Mountains, being 

one of Australia’s major dust producing regions (Hesse and McTainsh, 2003). Dust fluxes are, 

however, similar to those calculated for other relatively humid, eastern areas of the MDB (31-33 

g m
-2 

y
-1

) (Cattle et al., 2009; McTainsh and Lynch, 1996). The overall similarity between these 

previously published values and the results of this study (~30 g m
-2 

y
-1

) supports the 

appropriateness of the deposition rate estimates. While the exact flux of individual trace elements 

is uncertain, the estimates appear a reasonable approximation of atmospheric deposition relative 

to local, surface-derived inputs.  

 

There are few previous estimates of pollutant metal flux within the Australian region. Deposition 

flux reported for metropolitan areas are substantially higher than those in the Snowy Mountains. 

For example, the mid-range estimates of Cu and Pb deposition in the Snowy Mountains are  3-

60% (Cu) and 3-25% (Pb) of rates reported for metropolitan Sydney (approximately 350 km NW 

of the Snowy Mountains) (Davis and Birch, 2011). By contrast, fluxes of industrial metals in this 

study are generally 1-2 orders of magnitude greater than in alpine and remote marine sites in 

New Zealand (approximately 2,000 km west of the Snowy Mountains) (Arimoto et al., 1990).  

Thus on one hand, low metal fluxes to the Snowy Mountains, by comparison to metropolitan 

areas, reflects their remote location and lack of local point sources, while on the other hand, high 

metal flux by comparison to other remote locations reflects the proximity of significant industrial 

sources on the Australian continent. 

6.3 Metals concentrations in peat mires 

Of the sedimentary archives examined in this study, the peat mires are generally considered to 

most accurately reflect rates of atmospheric industrial metal input. This is by virtue of their high 

relative atmospheric input in comparison to the other studied environmental repositories (soils, 

lakes and reservoirs).  In addition, atmospherically deposited metals are likely to be fixed on the 

organic peat surface due to the availability of numerous exchange sites on which metals can be 
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bound (Steinnes and Friedland, 2006). For this reason, the fidelity with which peat mires record 

the state of the atmosphere has enabled them to be used widely to examine both the history of 

atmospheric pollution and natural dust transport and deposition (Le Roux et al., 2012; Marx et 

al., 2014c; Marx et al., 2009; Shotyk et al., 2002; Weiss et al., 2002). In the Snowy Mountains, 

the fidelity of peat mires has been previously demonstrated by agreement between the temporal 

patterns in metal enrichment recorded in the peat cores with the generalised history of industrial 

development across south-eastern Australia (Marx et al 2010). The high atmospheric fidelity of 

the peat mires is demonstrated further by the approximate equivalence in the order of trace metal 

enrichment between the aerosol samples and the studied peat mires. That is, those metals most 

enriched in aerosols (Cu, As, Mo, Ag, Cd, Sb) are also those most highly enriched in peat mires 

(especially in the more ombrotrophic USC). 

  

Despite the fact that metal enrichment patterns are comparable between the aerosols and the peat 

mires, there are some significant differences. For example, industrial metal EF in the peat mires 

does not reflect the magnitude of atmospheric aerosol enrichment, with EF in peats being 

systematically reduced by an average of 5-7 times. Moreover, averaged across all enriched 

industrial metals, the measured annual accumulation rate, (that is the total volume of metals in 

the peat), in the USC peat mire between 1980 and 2006 was only (mid estimate and (range)) 80 

(40-90) % of the estimated aerosol deposition rate. While, this suggests some possible loss of 

deposited metals from the peat, these differences may simply reflect the timing and temporal 

resolution of the peat records by comparison to those of the collected aerosols. As already noted, 

dust deposition flux estimated by the current study was lower than that measured in USC peat 

mire between 1980 and 2006. Consequently, part of the relatively low EF in the peat mires may 

arise from relatively higher natural dust loads which dilute the metal pollution concentrations. 

Furthermore, incorporation of metals into the peat mires over several years is likely to smooth 

peaks in atmospheric metal concentration observed in the weekly to monthly aerosol samples. 

This is supported by the relatively large reduction in EF factors between the aerosol samples and 

the peat mires for the most highly enriched industrial metals (Cu, As, Cd, Sn, and Sb). In 

addition, higher metal EF variability occurred in the aerosols, implying  their higher EF are 

relatively more strongly influenced by high pollution days.  
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Contributing further to the difference in EF between the aerosols and peat mires, may be  particle 

size fractionation of metals during deposition from the atmosphere to the peat surface (Chester et 

al., 1999). Atmospheric fall-out is dominated by larger particles, which are typically less 

enriched in industrial metals. This effect has been shown to result in relative depletion during dry 

deposition by comparison to bulk in situ (atmospheric) aerosol by a factor of between 1.8 and 9.9 

(Chester et al., 1999). In this study, the EF difference between aerosols and peats ranges from 

1.2 less times for Ni to 26 times less for Mo, with an average of 6 times less across the two peat 

mires.  

 

The concentration of individual industrial metals within peat mires may also be controlled by 

factors specific to individual elements, such as the relative concentration of each element in 

aerosols compared to locally sourced sediments. For example, the difference in concentration 

between collected aerosol samples and non-enriched (‘natural’) local sediments is comparatively 

greater for Sb by comparison to Mo, i.e. 13 and 9 times, respectively.  This implies local non-

contaminated sediment delivered to the peat mires will dilute the concentration of industrial Sb 

more strongly than that of industrial Mo. This effect is likely to contribute to the observed 

differences in the relative EF depletion of Sb and Mo in peat mires compared to aerosols (Sb EF 

is 20 times less in peat mires relative to aerosols samples while Mo is only depleted by a factor 

of 2 These differences suggest other factors such as efficiency of dust scavenging of individual 

metal pollutants, pollutant metal phase and oxidation state, particulate size as well as conditions 

in the peat mires themselves, e.g. moisture content, pH and redox state, may also be important 

influences on how effectively atmospherically derived industrial metals are incorporated into the 

peat mires. Despite these differences, in this study industrial metals within peats can be 

considered broadly representative of atmospheric input. 

6.4 Industrial metals in Club Lake 

By comparison with the peat mires, Club Lake sediments respond far less sensitively to 

atmospheric input of industrial metals (Stromsoe et al., 2013). Consequently, only those 

industrial metals which have very low natural sediment concentrations (Sb, Mo, Cd and As) 

show significant enrichment (maximum EF >1.5) in Club Lake. Metals that are highly enriched 

in aerosols, but present in naturally high concentrations were not found to be enriched. Notably 
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of the elements with the highest excess atmospheric deposition flux (Cr, Ni, Cu, Pb) only Pb 

displayed possible minor enrichment in Club Lake sediments.  

 

Enrichment factors for even the most highly enriched industrial metals in Club Lake were 

considerably lower than in the aerosol samples, i.e.  8, 18, and 21 times less for Mo, As and Sb, 

respectively. This highlights the subdued response of the lake even to relatively high levels of 

atmospheric enrichment. In addition, metal EF in the lake were reduced relative to the peat mires 

by an average of 2.4 times, suggesting this difference is unlikely to be explained by processes 

common to both environments such as particle size fractionation during atmospheric deposition.  

 

As discussed in Stromsoe et al., (2013), the lack of observed industrial metal enrichment in the 

Club lake is explained largely by the fact that catchment derived sediment greatly exceeds 

atmospheric input. Overall the estimated atmospheric deposition of industrial metals (i.e. those 

enriched in aerosol samples) contributed and average of 35% (or 30-60% depending on the 

estimation method) of their concentration in the lake sediments. By comparison, atmospheric 

input is largely the only source of sediment in the peat mires (Marx et al., 2011). The additional 

‘natural’ contribution of these metals is supplied by sediment derived from the lake catchment, 

which, considering the generally low level of enrichment must be largely free of excess 

industrial metal. It is therefore likely to be derived from subsurface sediment or freshly weathred 

material.   

 

The exception to this is the enrichment of a number of industrial metals in Club Lake (e.g. Sb, 

Mo, Cd and As) which can be attributed, in part, to their enrichment sensitivity.  An impression 

of the relative sensitivity of different industrial metals can be provided by comparing the 

increase in concentration required to produce an EF of 2 times background concentrations. This 

is achieved by dividing the background (natural) concentration of each industrial metal by their 

mean (background) concentration (equation 6).  

                                      Metalsens = (Cm/Cmean)100                                         (6) 
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where Metalsens is metal sensitivity, Cm is background concentration of a particular metal in the 

Perisher (pre-industrial) sediments which also displays enrichment in the aerosol samples and 

Cmean is the mean background concentration of all metals in the Perisher sediments, which are 

similarly enriched in the aerosol samples.  

 

The relative sensitivity of industrial metals to contamination is shown in Table 4. The industrial 

metals most enriched in the lake sediments (Cd, Sb, Mo and As) are all relatively sensitive to 

enrichment. This means a small increase in their concentration will result in enrichment. For 

example, to enrich Sb two times in this context requires an anthropogenic contribution of only 

121 ppb. Copper by contrast requires environmental concentrations to increase by approximately 

28,000 ppb and Sn by 9,000 ppb. Silver is also relatively sensitive and showed minor enrichment 

in Club Lake (EF<1.5).  

 

Table 4 Relative sensitivity of 
industrial elements to enrichment 

    
 

 

Relative 
sensitivity* 

(%)  

Ag 0.2 
 

Cd 0.4 
 

Sb 1.1 
 

Mo 1.4 
 

As 8 
 

Co 64 
 

Cu 70 
 

Ni 104 
 

Pb 144 
 

Cr 323 
 

Zn 382 
 

*Relative sensitivity is the concentration increase 
required to produce EF 2  
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6.5 Industrial metals in soils 

In contrast to the other environmental archives, calculating EF in the soil samples is not straight 

forward due to variability in the behaviour of conservative elements against which enrichment is 

compared (Ta, Ti, Sc and Ga). This variability is presumably due to weathering/erosion loss in 

parts of the soil profile versus input of aeolian dust in the upper profile (Costin et al., 1952; Marx 

et al., 2011). Despite this difficultly, there is evidence of industrial metal enrichment in the soils. 

The most obviously enriched metals were Cd (EF ~3.4-5), Mo (EF ~2-3), Ag (EF ~0-4) and Sb 

(EF ~1-2). Enrichment factors in the upper section of the soils profiles are comparable to those 

of the studied peat mires for Cd and Ag, however Mo and Sb values are lower reflecting their 

lower relative sensitivity to enrichment (Table 4) and implying  they are being diluted by 

additions of natural sediment.Previous studies have demonstrated that, even in areas proximal to 

emission sources, the identification of industrial metals in soils may be complicated by high 

background concentrations, or by variations in the type and amount of organic matter or clay 

within the soil profile (Barbieri et al., 2014). In the Snowy Mountains the obvious enrichment of 

Cd, Mo, Ag and Sn over other metals with significant anthropogenic sources reflects their 

relative sensitivity to enrichment, i.e. low background concentrations in local soils. 

 

Metals enriched in the aerosols and peat mires, but with relatively low enrichment sensitivity 

(Pb, Zn, Cu, Ni, Cr), display more complex patterns in the soils. The soil profile closest to the 

ridge crest contains higher metal EF due to its landscape position.  Increasing depletion 

(indicated by EF < 1) of these elements downslope is consistent with increasing dilution from 

‘natural’ sediments due weathering, geomorphic processes and/or reduced dust input. There is 

some evidence of potential eluviation of industrial metals in the soils (Fig. 11), i.e. development 

of a rudimentary E horizon at 200-500 mm depth with an illuvated zone at 500-600 mm depth. 

While these soils have been previously noted for a distinctive lack of visual evidence of 

podzolization (Costin et al., 1952; McKenzie et al., 2004), subtle podsolization is however 

apparent in the ultra-high resolution trace element data presented here. 

 

The concentration of these metals in the A0 and A1 soil horizons (0-10 cm) is approximately 1.5 

to 2 times less than in the peat mires. The age of this horizon is unknown. Given the relatively 
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slow rate of vertical accumulation in the peat mires,  i.e.  50-150 mm in 120 years, it is likely to 

integrate the whole history of industrial metal pollution during which metal EF in the peat mires 

has increased from approximately 1 to 5 (Marx et al., 2014c). Consequently, concentrations and 

EF in the A1 soil horizons are diluted by comparison to the post-1980 peat records as they 

integrate over a longer period including lower industrial metal input (1880-2006 AD; Marx et al., 

2010). While it is not possible to reliably correct for this effect, a comparison of the pre and post 

1980 EF in the peat mires, imply industrial metal input to the top of the soils may be equivalent 

to that of the peats mires.  

 

There is evidence of loss of some metals from the soil, as shown by the depletion of industrial 

metals in the upper soil compared to the parent material, most notably for Cu, and to a lesser 

extent Ni and Zn and possibly Pb, Cr and As in the toe slope soil profile. This is approximately 

in accordance with the relative geochemical mobility of these elements in soils, which increases 

in the order Pb < Cr < As < Ni < Zn < Cu (Allison and Allison, 2005).  Depletion of this same 

suite of metals was reported for Swiss forest soils (Blaser et al., 2000). Blaser et al. (2000) 

describe this as the net outcome of the opposing forces of depletion due to leaching and 

enrichment due to deposition and it is proposed this is similarly occurring in the Snowy 

Mountains. 

6.6 Industrial metal enrichment in reservoirs 

The reservoirs examined in this study are located down catchment from the other archives. 

Because of their relatively large catchment to lake area ratios they receive relatively little direct 

atmospheric input, i.e. 7 (5-10) and 15% (10-25%) of total accumulation in Guthega Reservoir 

and Geehi Reservoir, respectively. Total sediment accumulation rates are relatively high at 700 

and 2600 g m
-2 

y
-1 

for Geehi and Guthega Reservoirs, respectively. By comparison, total 

accumulation in Club Lake is 330 g m
-2 

y
-1

 and < 50 g m
-2 

y
-1 

in the peat mires.  As a result, direct 

atmospheric deposition is only a minor source of industrial metals to the reservoirs, explaining 

the lack of fidelity between aerosols and reservoir EF.   
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Industrial metals found in the reservoirs are unlikely to be contemporaneous with the aerosol 

samples collected in this study. This is because industrial metals were accumulating in the 

surface soils during the preceding 70 years before reservoir construction. These older metals, 

which have been stored within the catchment, may be transported to the reservoirs at any point 

following their deposition. This implies the metal history of even the youngest sediments in the 

reservoirs could represent a mixture of historical metal deposition patterns (see Marx et al., 

2010) in the Snowy Mountains. Hence some of the differences in metal enrichment in the 

reservoirs compared to, for example, the peat mires may be attributable to historical patterns in 

the atmospheric deposition of industrial metals. 

 

Given that direct atmospheric deposition is only a minor source of industrial metal input in the 

reservoirs, it is unsurprising that metal EF patterns in the reservoirs mostly closely resemble 

those found in the soil samples. This is shown in Table 5, where the average concentration of 

each industrial metal in the reservoirs relative to the conservative elements (Ta, Ti, Ga and Sc) is 

divided by its average relative concentration to the same elements in the soils. This general 

agreement in EF between the soil samples and the reservoir sediments, , further suggests that the 

sediment accumulating the reservoirs is largely derived from catchment top soil. If the reservoir 

sediment consisted of, for example, significant subsoil (which is less contaminated by industrial 

metals) or freshly weathered material, relative depletion of industrial metals would be expected 

by comparison to the top soil samples. Thus, reservoir sediments, like the catchment soils, are 

generally most highly enriched in relatively enrichment sensitive metals (Mo, Cd, Sb, As and 

Ag). However, Table 5 also demonstrates possible additional enrichment (Co, Cu, Zn, As, Mo, 

Ag, Cd) or depletion (Cr, Sn, Pb) in metals in the reservoirs relative to the soils. These same 

groups of industrial metals are enriched or depleted in the reservoirs relative to their behaviour in 

the peat mires (with the exception of Mo, Co which are relatively enriched in reservoirs 

compared to the soil samples, but depleted relative to the peat mires). 
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Table 5.  Industrial metal enrichment in 
Geehi and Guthega reservoirs relative to 
topsoil concentrations 

  
Guthega 
Reservoir 

Geehi 
Reservoir  

Cr 0.9 0.8 
 

Co 1.3 1.7 
 

Ni 1 1.1 
 

Cu 1.2 2.1 
 

Zn 1.2 1.3 
 

As 1.5 2.2 
 

Mo 1.1 1.6 
 

Ag 1.1 1.3 
 

Cd 1.3 1.8 
 

Sn 0.8 0.6 
 

Sb 0.9 1.4 
 

Pb 0.9 0.7 
 

 

 

The patterns in relative metal enrichment and depletion in the reservoir sediments may be 

attributed to differences in metal particle affinity and solubility. The partition coefficients of 

industrial metals in soils decrease in the order Cr >Pb >As >Ni >Sn >Zn >Cd >Ag >Cu >Sb >Co 

>Mo (Allison and Allison, 2005). In general, more highly particle reactive and less soluble 

metals, such as Pb and Cr are relatively depleted in the reservoirs, whereas less particle reactive, 

more mobile elements such as Zn, Cd, Ag, Cu and Mo are relatively enriched (Table 5). The 

behaviour of the metalloids, Sb and As, is more variable. Antimony is relatively mobile, 

however, it is enriched only in Geehi Reservoir, while As is relatively particle reactive but is 

enriched in the reservoirs over the soils. Overall, however, this implies that relatively immobile 

industrial metals (e.g. Pb), may be trapped within the soil matrix following deposition from the 

atmosphere. By contrast, more mobile metals such as Cu may be more readily transported, 

resulting in comparative enrichment or depletion of these elements in reservoir sediments. This 

assertion is supported by the soils data. Copper concentration is lower in the A1 horizon and is 

reduced down slope, implying it is being depleted from the soils. In addition, overall Cu is higher 

in the reservoirs than the catchment soils (Table 5). Zinc, Mo, Ag and Cd are also relatively 

enriched in the reservoirs; however, of these only Zn shows evidence of depletion in the soils 
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and it is significantly less pronounced than for Cu. The uptake of Cu and Zn by vegetation 

(Gandois, 2010) may play a part in these patterns, as organic matter may be preferentially being 

transported (over mineral sediment) from the highly organic alpine soils.  

 

The differences in metal enrichment between the two reservoirs appear to be partly a function of 

contributing catchment area. Enrichment factors for the most enriched metals, Cd, Mo, Cu, As 

are higher in Geehi by 1.7, 1.4, 1.8 and 2.0 times, respectively. This is broadly equivalent to the 

difference in catchment area, with Geehi Reservoir 1.7 times larger than Guthega Reservoir.   

6.7 Summary and implications 

In this study, three factors appear to be of most importance in controlling metal enrichment 

patterns within different environmental archives in the Snowy Mountains. These are; 1) the 

relative contribution of atmospheric input; 2) the sensitivity of individual metals concentrations 

to perturbation from industrial contributions and; 3) the behaviour of individual metals. These 

factors are shown in Figure 14, where the enrichment patterns of Pb, Cu and Sb through the 

catchments of the Snowy Mountains are demonstrated. 

 

Aerosols sampled in this study were enriched in industrial metals by an average of 15 times 

background concentrations, further confirming the widespread perturbation of industrial metals 

in the atmosphere. A comparison of calculated deposition flux with accumulation rates in the 

peat mires, the environment dominated most significantly by atmospheric deposition, implied 

depletion of industrial metals occurred during deposition, possibly via size fractionation, with an 

additional reduction in EF in sedimentary environments due to dilution with uncontaminated 

material. Despite a reduction in EF by 5-7 times between the aerosols and the peat mires, 

industrial metal enrichment was found throughout the Snowy Mountains catchments. All else 

being equal, the degree of metal enrichment in the various sedimentary environments sampled 

(peat mires, soils, lakes and reservoirs) was a function of the relative contribution of atmospheric 

aerosol input versus that of terrestrially derived sediment. Consequently, ombrogenous peat 

mires and soils (particularly those closer to ridge crests), which in the Snowy Mountains are 

partially fed by dust, tended to record the highest enrichment in industrial metals (Fig. 14). A 

reduction in metal EF therefore generally occurs down catchment (Fig. 14). However, 
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geomorphically active environments (with higher sediment yields) which produce 

uncontaminated sediment (e.g. cirques) have reduced metal enrichment due to dilution. 

 

 

 

Figure 14. Industrial metal mass flux and metal enrichment (EF) patterns in the Snowy Mountains; shown for Pb (top panel), 
Cu (middle panel) and Sb (lower panel).  
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The sensitivity of metals to enrichment was found to be a key influence on the EF patterns 

between industrial metals. Metal sensitivity in this context was controlled by the background 

concentration of the metal versus its relative degree of perturbation by industrial processes. 

Metals with low natural abundance (Cd, Ag, Sb and Mo) were found to be consistently enriched 

within all the sedimentary environments examined (for example Sb in Fig. 14), because 

relatively lower industrial input by weight is required to raise their excess contribution over their 

natural concentration.   

 

The behaviour of individual metals also influences patterns of enrichment within the surficial 

environment. In contrast with the general behaviour of most industrial metals, which showed 

reduced enrichment down catchment, was the behaviour of Cu and Cd (and to a lesser degree 

Zn) (Fig. 14) which were more enriched in the reservoirs than in catchment soils. Combined with 

evidence of Cu loss from the soils, this implies preferential transport of the most mobile 

industrial metals down catchment and their subsequent accumulation (and therefore 

concentration) in aquatic sedimentary systems. This stands in contrast to the most particle 

reactive metals such as Pb, which appear to be more strongly held within the soil matrix.  Metals 

including Pb and Cr therefore experience lower relative transport rates, at least in the alpine 

setting of the Snowy Mountains. They are most enriched in the atmospherically dominated 

environments and therefore display down catchment dilution.  

 

The presence of enriched industrial metal in all the sampled environments demonstrates that they 

are widespread in this otherwise relatively pristine alpine environment and that, in the case of 

some metals, are mobile in the environment. Examining the implications of these metals in the 

Snowy Mountains is beyond the scope of this paper, however, comparing them to critical 

pollutant loads, i.e. the Interim Sediment Quality Guidelines (ISQG) for Australia and New 

Zealand (ANZECC and ARMCANZ 2000), provides an assessment of their likely impact. These 

guidelines provide trigger values above which metal concentrations are considered deleterious.    

 

Excess industrial metal concentrations in the Snowy Mountains were generally below the ISQG 

trigger values (Table 6) in all the studied environments implying no significant ecotoxicity effect 
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is occurring.  However, Cr and Ni concentrations in Club Lake did exceed trigger values. These 

metals were not however found to be enriched Club Lake. Therefore their high concentration in 

sediments is derived from their naturally high concentration in catchment source rocks.  In other 

environments Ni is close to trigger values as is Pb (Table 6). Industrial metals are known to be 

increasing in the Snowy Mountains (Fig. 4 and 12), consequently, calculating the increase in 

industrial metal input required to reach the threshold of the ISQG trigger values provides a 

perspective on the sensitivity of the environment to be impacted by metal pollutants. The 

required increase is calculated for each archive (peat mires, lake and reservoirs) according to 

equation 7. 

RI= ((CT-CTS)+CES)/CES                                      (7) 

 

where RI is the required concentration increase in metal pollutant, CT is the trigger value, CTS is 

current concentration of the element in the sediment and CES is the excess concentration of that 

element in the sediment. 

 

Table 6 shows the estimated additional atmospheric flux required to raise sediment metal 

concentrations to the trigger value levels. The required increase is variable both between 

different environments and for different metals. It ranges from 2-4 times current rates for Ni to 

13-74 times for Ag. Overall, metals with higher background concentrations relative to trigger 

values (Cu, Cr, Pb, Ni) require the lowest proportional increase in anthropogenic metal flux to 

reach trigger values. Considering the relatively high pre-existing flux of these elements (Table 

3), however, this equates to a considerable additional atmospheric flux (e.g. at least 2190 ug m
2
 

yr
-1

 in the case of Pb). Metals which are highly sensitive to enrichment (Ag, Cd and Sb) are 

present in low concentrations relative to trigger values.  They therefore require a relatively large 

increase (between 6 and 74 times current rates) in deposition flux to result in concentrations 

reaching deleterious levels.  

 

Overall, atmospheric industrial metal inputs demonstrated for the Snowy Mountains can be 

considered broadly similar to those found outside major industrial and urban centres across the 

eastern seaboard of Australia and in areas similarly impacted by regional pollution sources. 



46 

 

However, while these metals represent a significant potential source of contamination across 

large areas, their surface enrichment is a function of a complex set of processes which vary 

across the landscape. As a result monitoring of environmental contamination by atmospheric 

metals and determining the threat they may pose necessitates a thorough understanding of 

atmospheric and surficial geochemistry and its relationship to local earth surface processes. 
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Table 6. Sensitivity of archives to enrichment (increase in industrial flux required to produce sediment concentrations equal to trigger 
values)  

      Upper Snowy Peat Mire Club Lake   Guthega Reservoir   Geehi Reservoir 

 

Trigger 
value

*
 

(mg kg
-1

) 
 

Current 
concentration

a
 

(mg kg
-1

) 

Excess 
concentration 

(mg kg
-1

) 

Required 
increase

b
 

(x) 
 

Current  
concentration 

(mg kg
-1

) 

Excess 
concentration 

(mg kg
-1

) 

Required 
increase

b
 

(x) 
 

Current 
concentration 

(mg kg
-1

) 

Excess 
concentration 

(mg kg
-1

) 

Required 
increase

b
 

(x) 
 

Current  
concentration 

(mg kg
-1

)  

Excess 
concentration 

(mg kg
-1

) 

Required 
increase

b
 

(x) 

Cr 80 
 

25 8 8 
 

99 C C 
 

48 4 10 
 

44 2 24 

Ni 21 
 

13 6 4 
 

35 C C 
 

19 0.9 5 
 

20 2 2 

Cu 65 
 

14 9 8 
 

25 C C 
 

18 0.4 7 
 

30 20 3 

Ag 1 
 

<0.1 <0.1 74 
 

0.1 <0.1 60 
 

<0.1 <0.1 18 
 

0.1 <0.1 13 

Cd 1.5 
 

0.1 0.1 15 
 

0.2 <0.1 15 
 

0.2 0.1 10 
 

0.3 0.2 7 

Sb 2 
 

0.2 0.1 18 
 

0.1 <0.1 27 
 

0.2 <0.1 61 
 

0.3 0.1 17 

Pb 50   23 14 4   45 5 2   29 9 3   21 2 18 

*Dry weight. 
                

a
Estimated from composition of combusted peat using organic matter content of 60% and assuming bulk density of 1 g cm

-3.
 

b
Required increase is the proportional increase in anthropogenic flux to produce sediment concentrations equivalent to trigger value. 

c
Metal was not enriched meaning that required flux increase cannot be calculated. 

Note required Zn flux is not calculated due to presence of Zn in filter material used to collect aerosol samples. 
 

 



48 

 

Supplementary material 

Estimation of aerosol/metal deposition flux 

Dry deposition 

Size dependent deposition velocities were estimated using Stokes terminal fall speed according 

the procedure of Jacobson (2005). This four step process begins by estimating the deposition 

velocities (Vd,
iest  

cm s
-1

) of each particle size class according to equation (1) 

 

Vd,i
est 

= (2ri
2
(ρp-pa)g/9ƞ)*Gi    (1) 

where ρp is the density of the particle, (taken here as the density of quartz 2.65 g cm
-3

), r is the 

particle radius (cm), pa is the density of air (g cm
-3

) determined from the mean annual 

temperature and elevation of the sampling sites, ƞ is the dynamic viscosity of air and Gi is the 

Cunningham slip-flow correction using the values of Kasten (1968). Aerosol particle size 

distributions were measured for 20 randomly selected filters on a Coulter Multisizer following 

(McTainsh et al., 1997).  

 

Reynold’s numbers were then estimated using the estimated deposition velocities obtained from 

equation 2, according to equation 3. 

     

Rei
est 

= 2ri Vd,i
est 

/ υa     (2) 

where υa is the kinematic viscosity of air determined from mean annual temperature and 

elevation of the sampling sites. 

 

Following this, the Reynolds numbers were corrected according to Beard’s (1976) 

parameterisation for either slip flow (Re <0.01) or continuum flow (0.01 < Re < 300). The final 

fall velocities were then recalculated according to equation 3. 
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Vd,i = (Rei  υa)/2ri     (3) 

where Vd,i is final deposition velocity for particle size class i and Re the corresponding 

(corrected) Reynolds number.   

 

Dry deposition rates were then calculated for 60 aerosol size classes using equation 4. 

𝐹𝑑 = ∑ 𝑉𝑑,𝑖 ∗
𝑛
𝑖=1 𝐶𝑖                                                                   (4) 

where Fd is the dry deposition flux (g
 
m

-2 
yr

-1
), Vd the particle size specific deposition velocity 

and Ci is aerosol concentration (g m
-3

). Finally, the dry deposition flux for individual industrial 

metals was calculated from the total aerosol deposition rates and the individual trace metal 

aerosol concentrations.   

Wet deposition 

Precipitation deposition 

 

Precipitation deposition was calculated by estimating the concentration of metals in precipitation 

from their concentration in the atmosphere using a scavenging ratio (Z), defined by the equation 

5 (Duce et al., 1991): 

Z = Cp/Ca      (5) 

where Cp is the concentration of the metal in precipitation and Ca its concentration in the 

atmosphere . 

 

Trace element flux (Fp) (ug m
-2

 y
-1

) was estimated according to equation (6) 

 

Fp = P*Z*Ca*p
-1

     (6) 

 

Where P is the annual precipitation amount (mm), Z is the scavenging ratio (which is 

dimensionless), Ca is the mean annual concentration of the element in the atmosphere (ug m
-3

) 

and p is the density of air (taken as 1200 g m
-3

). Precipitation depth is converted to mass of water 

per unit area using standard temperature and pressure.  
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Precipitation amount is taken as 2000 mm yr
-1

 (the estimated mean annual rate for elevations 

above 1700 m in the Snowy Mountains) 

 

Cloud water deposition 

Cloud water deposition was estimated using equation 

Fi,cw = Fcw * Ci,cw     (7) 

where Fi,cw is the annual cloud water flux of element i, Fcw is the annual cloud water hydrologic 

input, and Ci,cw is the mean annual concentration of the element in cloud droplets. 

 

Cloud water composition (Ci,cw the concentration of each element in cloud water) was estimated 

using equation (8) 

Ci,cw = -((E*Ca)/(E-1))     (8) 

where Ci,cw is the air equivalent concentration of the element in cloud water (pg m-
3
), E is the 

scavenging efficiency of cloud water drops for aerosols and Ca is the total concentration of the 

element in the atmosphere (cloud water + interstitial aerosols) (pg m
-3

).  

 

The hydrological input from cloud water was estimated using equation 9. 

 

Fcw = LWC * Vd,cw * t_     (9) 

where Fcw is the annual cloud water hydrological input to the catchment, LWC is the mean liquid 

water content of the clouds (g m
-3

), Vd is the deposition velocity of cloud water droplets (m s
-1

) 

and t is time spent below the cloud base each year.  

     

Obtaining site-specific measurements of scavenging efficiency, liquid water content and cloud 

immersion time was beyond the scope of this study. Values were, therefore, estimated from 

previously published values for mountain environments elsewhere (E, LWC), from limited 
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empirical data (LWC) and from observation (t). To provide an estimate of uncertainty associated 

with the selection of these values cloud the calculation of cloud water deposition was performed 

using mid, low and high estimates of E, LWC and t.  These values are presented in 

Supplementary Table 1. These estimates were then summed with those of Fd and Fp to provide a 

range estimate of total deposition. 

Trace element analysis 

The analysis of trace elements (including heavy metals) in the aerosol samples, sediment samples 

extracted from the reservoirs cores, soils and samples from the Club Lake core (previously 

presented in Stromsoe et al., 2013) was performed by solution quadrupole ICP-MS on a Agilent 

7700x instrument at the Department of Earth Sciences, University of Melbourne, Australia. 

Sediment samples from the peat cores were analysed at Laurentian University, Ontario, Canada 

using the same approach (Marx et al., 2010).  

 

All samples analysed for this study were dried at 60°C for 36 h to remove moisture and 

homogenised using an agate mortar and pestle prior to trace element analysis. Samples from the 

peat cores and the soil pits were additionally combusted in a high temperate oven at 450°C for 12 

hours. This volatised the organic component of each subsample, while the mineral component 

was retained for trace element analysis. Subsamples from each aerosol filter were carefully 

scraped from the filter using a stainless steel spatula before their trace element composition was 

measured. 

 

All samples and standards, typically about 100 mg, were digested in Teflon beakers on a hotplate 

at 140°C overnight using 3 ml of a 2:1 mixture of concentrated HF-HNO3. Solutions were then 

evaporated to dryness and then 1 ml of 15N HNO3   was added and evaporated to dryness twice. 

They were  then dissolved overnight in 10ml of 3N HNO3. A procedural blank was prepared 

with each batch of samples. Sample solutions were transferred to polycarbonate centrifuge tubes. 

For silver analyses, an aliquot of the solution was diluted to 2% HNO3 and a dilution factor of 

1000 and Rh added as an internal standard. For all other elements, solutions were diluted to 2% 

HNO3 with a dilution factor of 2000. 
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Silver was analysed in dilution gas mode with 2.2 ml of He cell gas to minimize the level of 

oxide interferences on Ag. A single element Ag standard was used for calibration and 2 soil 

standards and one shale standard analysed as unknowns. Oxide interferences were less than 10% 

of the silver signal and corrected for.    

 

Other elements were analysed in dilution gas mode without cell gas using procedures 

comprehensively described by Eggins et al (1997) and Kamber (2009). The method uses a 

natural rock standard for calibration, internal drift correction using multi-internal standards (Li
6
, 

Sr
84

, Rh, Sm
147

, Re and U
235

), external drift monitors for drift correction and aggressive washout 

procedures. Two digestions of the USGS standard W-2 were used for instrument calibration. The 

preferred concentrations used for W-2 were mostly derived by analysing it against synthetic 

standards and a literature survey of isotope dilution analyses (Kamber et al., 2003, 2005).  

 

The instrument was tuned to give Cerium oxide levels of < 0.5%. Four replicates of 100 scans 

per replicate were measured for each isotope. Dwell times were 10 milliseconds, except for Mo, 

Cd, Sb, Ta, which were 30 milliseconds. Long sample wash-out times of 6 minutes with 

solutions of 0.5%  Triton X-100, 0.025% HF in 5% HNO3 and 2% HNO3 and long sample 

uptake times of 120 seconds were used. Drift monitors, followed by a blank were analysed every 

6 – 8 samples. Concentrations of the samples were well above minimum detection limits. 

Quality control was maintained by the analysis of rock and soil standards as unknowns. External 

precision and accuracy for soil standards (JSo-1, GSS-1), shale standard SCo-1 and basalt and 

andesite standards BHVO-2, JA-2 and AGV-2 are assessed in Suppl Table 3. 
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Table 1. Parameter values for cloud water deposition estimates  

  LWC (g m-3)a Vd,cw (mm s-1)b t (%)c E (%)d 
         Moderate1 

0.2 46 (grass) 20 60 
             100 (forest)     
         Low2  

0.1 10 (grass) 10 60 
             45 (forest)     
         High3 

0.3 46 (grass) 30 85 
             100 (forest)     
         1moderate LWC, moderate to high cloud water deposition velocity, moderate estimate for time spent below cloud base,  

moderate estimate for scavenging efficiency of cloud water for aerosols 
2low LWC, low cloud water deposition velocity, moderate estimate for time spent below cloud base,  
low estimate for scavenging effeciency of cloud water for aerosols 

 3moderate LWC, moderate to high cloud water deposition velocity, high estimate for time spent below cloud base,  
high estimate for scavenging efficiency of cloud water for aerosol 
aReynolds et al. 1996, Kasper et al. 1998 

           bReynolds et al 1996, Miller et al 1993 
           cCloud immersion time is estimated from personal observation 

          dGrassbauer et ala 1994, Shumann 1991, Kasper 1998 
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Table 2. 210Pb activities and CIC ages for reservoir cores 

  

Lab 
code 

Depth 
(mm) 

Total  210Pb  
Supported 

210Pb  
Unsupported 

210Pb  
Calculated CIC  

    
activity (Bq kg-

1) 
activity (Bq kg-

1) 
activity (Bq kg-1) Ages (years) 

Guthega Reservoir 
    

N986[3] 0-10 485 ±30 26 ±12 463 ±33 - 

N987[2] 20-30 614 ±26 57 ±5 560 ±27 - 

N988[2] 40-50 553 ±23 55 ±5 501 ±24 6 ±1 
N989[3] 70-80 532 ±24 41 ±3 495 ±25 10 ±1 
N990[2] 90-100 462 ±21 55 ±5 409 ±22 13 ±2 
N991[3] 140-150 387 ±18 46 ±4 344 ±19 19 ±2 
N992 190-200 420 ±19 45  4 375 ±19 - 

Geehi Reservoir 
    

923 0-6 356 ±15 47 ±4 287 ±14 - 

924 30-34 372 ±15 54 ±4 296 ±14 - 

925 70-75 374  ±15 48 ±4 304 ±14 - 

926 95-100 429 ±17 38 ±3 364 ±17 22 ±5 

927 150-155 285 ±12 54 ±5 215 ±12 40 ±6 
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Table 3.Trace element data of standards (μg g-1) 
       

  W-2        BHVO-2                  JA-2 

 
 

 
  

 

 This study 
 

 Long term** 

 

Preferred values* 

 

This study 
 

Long 
term**   

 

Preferred 
Values* 

 

Calibration Preferred*  RSD 

 

  Digestions = 3  
  

  
 

  

     Digestions = 3  
  

  
 

 
 

Standard 

 

Values 
 

 

    Analyses = 3 
 

    
 

    
 

       Analyses = 6 
 

    
 

    

 

  

 

    

 

Average RSD 
 

Average RSD 

 

Average RSD 

 

Average RSD 
 

Average RSD 

 

Average RSD 

Sc    36 
 

35.9 2 
 

33 1 
 

32 0.9 

 

32 3 

 

19.6 2 
 

19.6 1.4 

 

17.4 6.9 

Ti    6356 
 

  
 

16725 0.9 
 

16481 1 

 

16300 12 

 

4018 2.3 
 

4037 2.4 

 

  

Cr    93 
 

93 6 
 

308 0.8 
 

301 1.2 

 

280 6.8 

 

437.8 2.4 
 

438.5 1.6 

 

450 8.9 

Co    45 
 

45 4 
 

46 0.3 
 

46 0.9 

 

45 7 

 

30 1.6 
 

30 1.1 

 

27 7 

Ni    70 
 

72 6 
 

121 1.1 
 

119 0.8 

 

119 6 

 

141 1.5 
 

139 0.9 

 

134 11 

Cu    103 
 

105 3 
 

125 0.9 
 

126 0.7 

 

127 6 

 

27.6 2.8 
 

27 1.1 

 

27.9 1 

Zn    77 
 

77 8 
 

101 2.5 
 

102 1.3 

 

103 6 

 

64 1.3 
 

63 2.1 

 

65 8 

Ga    17 
 

18 6 
 

21 0.8 
 

21 0.6 

 

22 9 

 

16.5 0.9 
 

16.5 0.7 

 

16.5 7.3 

As    1.4 
 

1.1 9 
 

0.4 27 
 

0.6 15 

 

0.632-
0.92a 

 

 

0.63 22 
 

0.59 15 

 

0.93b 4 

Mo    0.42 
 

0.44  
 

4 12 
 

3 6.7 

 

4 5 

 

0.54 1.2 
 

0.54 1.6 

 

0.59 3.4 

Ag  
 

  
 

  
 

 
 

 

  

 

  
 

 
 

 

  

Cd    0.077 
 

0.077  
 

0.09 4.5 
 

0.09 2.2 

 

0.06 10 

 

0.06 4.6 
 

0.06 3 

 

0.078  

Sn    2 
 

2 5 
 

1.9 4.9 
 

2.0 6.5 

 

1.7 12 

 

1.69 4.6 
 

1.71 7.5 

 

1.56 1.6 

Sb    0.71 
 

0.77 5.2 
 

0.08 2.3 
 

0.08 5.9 

 

0.13 31 

 

0.12 1.4 
 

0.12 5.4 

 

0.14 7.1 

Ta    0.45 
 

0.47 8.5 
 

1.15 0.8 
 

1.14 0.5 

 

1.14 5 

 

0.6 0.7 
 

0.6 0.7 

 

0.7 14 

Pb 7.5   7.7 8   1.6 6.6   1.4 5.2   1.6 19   18.3 0.6   18.5 1.5   19.3 4 
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Table 3 continued 

      AGV-2   Jso-1 

 
 This study 

 

Preferred 
Values*** 

 

This study 

 

Compiled Values* 

      Digestions = 3 

 
  

 

Digestions = 3 

 
  

        Analyses = 3 

 

    

 

Analyses = 3 

 
 

  

 Average RSD 

 

Average RSD 

 

Average RSD 

 

Average RSD 

Sc    13 0 

 

13 8 

 

33 1 

 

  

Ti    6070 1.4 

 

  

 

7014 2 

 

  

Cr    16 2.2 

 

16 6 

 

74 1 

 

71 2 

Co    16 1.1 

 

16 6 

 

35 1 

 

32 1 

Ni    18 1.4 

 

20 5 

 

41 1 

 

39 2 

Cu    49 1.3 

 

53 8 

 

167 1 

 

169 2 

Zn    89 0.8 

 

86 9 

 

116 6 

 

105 2 

Ga    20 0.9 

 

20 5 

 

20 0 

 

  

As    0.74 10.2 

 

  

 

9.0 3.4 

 

8.1 0.1 

Mo    2 2.4 

 

  

 

0.7 3 

 

  

Ag   

 

  

 

0.112c 2 

 

  

Cd    0.069 2.800 

 

  

 

0.275 5.689 

 

  

Sn    2.2 8.9 

 

2.3 17 

 
1.6 4.3 

 

  

Sb    0.40 7.00 

 

  

 

0.31 4.24 

 

0.38 0.02 

Ta    0.83 1.1 

 

0.87 9.2 

 

0.19 1.76 

 

  

Pb 12.6 0.9   13.2 4   17.9 1.0   13.0 1.0 
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Table 3 continued 

 GSS-1   Sco-1 

 
This study 

 

Compiled 
Values* 

 

This study 

 

Compiled 
Values* 

 Digestions  = 1 

 
 

 

Digestions  = 1 

 
  

 Analyses = 1 

 
 

 

Analyses = 1 

 
 

  

 Values 

 

Value 

 

Values 

 

Value 

Sc    11 

 
 

 

12 

 

10.8-11 
 

Ti    11 

 

11 

 

3430 

 
  

Cr    58 

 
 

 

69 

 

68 
 

Co    13 

 
 

 

11 

 

10.5-11 
 

Ni    20 

 

20 

 

26 

 

27 
 

Cu    18 

 

21 

 

27 

 

28.7-29 
 

Zn    752 

 

680 

 

102 

 

100-103 
 

Ga    18 

 

19 

 

16 

 

15 
 

As    44 

 

34 

 

13.3 

 

12-12.4 
 

Mo    1.4 

 

1.4 

 

1.2 

 
  

Ag 0.36d 

 

0.35 

 

0.135 

 

0.134 
 

Cd    5 

 
 

 

0.156 

 

0.14 
 

Sn    6.7 

 

6.4 

 
3.4 

 
  

Sb    1.01 

 
 

 

2.11 

 
  

Ta    1.2 

 

1.4 

 

0.8 

 
  

Pb 97.0   98.0   30.4   31.0   

*GeoRem (preferred/compiled values) (Jochum et al 2005) 
                      

   
 **Long term Melbourne University Isotope and trace element geochemistry laboratory average 

 
    *** Imai et al 1995 

                                a GeoRem compiled values 

                                b GeoRem Compiled values are 0.77-0.85 

                             c Digestions = 4, Analyses = 34 
                               d Digestions = 4, Analyses = 34  
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