12 research outputs found

    Effects of exergaming on exercise capacity in patients with heart failure: results of an international multicentre randomized controlled trial

    No full text
    Aims Exergaming is a new tool to increase physical activity. This study aimed to determine the effects of access to a home-based exergame (Nintendo Wii) in patients with heart failure (HF) on exercise capacity, self-reported physical activity and patient-reported outcome measures.Methods and results We enrolled 605 HF patients in New York Heart Association functional class I-IV, independent of ejection fraction, in an international multicentre randomized controlled trial. Patients were randomized to exergame (intervention) or motivational support (control). The primary endpoint was change in submaximal aerobic exercise capacity as measured by the distance walked in 6 min (6MWT) between baseline and 3 months. Secondary endpoints included long-term submaximal aerobic exercise capacity, muscle function, self-reported physical activity, exercise motivation, exercise self-efficacy at 3, 6 and 12months. At baseline, patients on average walked 403142m on the 6MWT. Patients in the exergame group walked further compared to controls at 3 months (454123 vs. 420 +/- 127m, P = 0.005), at 6 months (452 +/- 123 vs. 426 +/- 133m, P = 0.015) and 12months (456 +/- 122 vs. 420 +/- 135m, P = 0.004). However, correcting for baseline 6MWT values by means of a linear mixed-effects model revealed no main effect for the intervention on 6MWT. Small significant effects on muscle function were found. Statistically significant treatment effects were found for muscle function but after correction for baseline and confounders, only the treatment effect for the heel-rise left at 6 months was significant (P<0.05). No treatment effect was found for exercise motivation, exercise self-efficacy, or self-reported physical activity.ConclusionExergaming was safe and feasible in patients with HF with different profiles in different health care systems, cultures and climates. However, it was not effective in improving outcomes on submaximal aerobic exercise capacity. Subgroup analysis did not identify specific subgroups benefiting from the intervention.Clinical Trial Registration: Identifier: NCT01785121

    A map of human genome variation from population-scale sequencing

    No full text
    The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype. Here we present results of the pilot phase of the project, designed to develop and compare different strategies for genome-wide sequencing with high-throughput platforms. We undertook three projects: low-coverage whole-genome sequencing of 179 individuals from four populations; high-coverage sequencing of two mother-father-child trios; and exon-targeted sequencing of 697 individuals from seven populations. We describe the location, allele frequency and local haplotype structure of approximately 15 million single nucleotide polymorphisms, 1 million short insertions and deletions, and 20,000 structural variants, most of which were previously undescribed. We show that, because we have catalogued the vast majority of common variation, over 95% of the currently accessible variants found in any individual are present in this data set. On average, each person is found to carry approximately 250 to 300 loss-of-function variants in annotated genes and 50 to 100 variants previously implicated in inherited disorders. We demonstrate how these results can be used to inform association and functional studies. From the two trios, we directly estimate the rate of de novo germline base substitution mutations to be approximately 10(-8) per base pair per generation. We explore the data with regard to signatures of natural selection, and identify a marked reduction of genetic variation in the neighbourhood of genes, due to selection at linked sites. These methods and public data will support the next phase of human genetic research

    A map of human genome variation from population-scale sequencing

    No full text
    The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype. Here we present results of the pilot phase of the project, designed to develop and compare different strategies for genome-wide sequencing with high-throughput platforms. We undertook three projects: low-coverage whole-genome sequencing of 179 individuals from four populations; high-coverage sequencing of two mother-father-child trios; and exon-targeted sequencing of 697 individuals from seven populations. We describe the location, allele frequency and local haplotype structure of approximately 15 million single nucleotide polymorphisms, 1 million short insertions and deletions, and 20,000 structural variants, most of which were previously undescribed. We show that, because we have catalogued the vast majority of common variation, over 95% of the currently accessible variants found in any individual are present in this data set. On average, each person is found to carry approximately 250 to 300 loss-of-function variants in annotated genes and 50 to 100 variants previously implicated in inherited disorders. We demonstrate how these results can be used to inform association and functional studies. From the two trios, we directly estimate the rate of de novo germline base substitution mutations to be approximately 10(-8) per base pair per generation. We explore the data with regard to signatures of natural selection, and identify a marked reduction of genetic variation in the neighbourhood of genes, due to selection at linked sites. These methods and public data will support the next phase of human genetic research.Molecular Epidemiolog
    corecore