74 research outputs found
Tactical design of last mile logistical systems
Tactical Design of Last Mile Logistical Systems
Alexander M. Stroh
161 Pages
Directed by Dr. Alan Erera and Dr. Alejandro Toriello
This dissertation consists of three distinct logistical topics, unified by a focus on the intelligent design of last mile logistical systems at a tactical level. The three design problems all arise within package delivery supply chains, though the mathematical models and solution techniques developed in these studies can be applied to other logistics systems. We propose models that do not attempt to capture granular minute by minute operational decision making, but rather, system behavior on average so that we may approximate the impact of various design choices.
In Chapter 2, we study tactical models for the design of same-day delivery (SDD) systems. While previous literature includes operational models to study SDD, they tend to be detailed, complex, and computationally difficult to solve. Thus, such models may not provide any insight into tactical SDD design variables and their impact on the average performance of the system. We propose a simplified vehicle dispatching model that captures the average behavior of an SDD system from a single depot location by utilizing continuous approximation techniques. We analyze the structure of vehicle dispatching policies given by our model for various families of problem instances and develop techniques to find optimal dispatching policies that require only simple computations. Our models can help answer various tactical design questions including how to select a fleet size, determine an order cutoff time, and combine SDD and overnight order delivery operations.
In Chapter 3, we study the tactical optimization of SDD systems under the assumption that service regions are allowed to vary over the course of each day. In most existing studies of last mile logistics problems, service regions are assumed to be static. Service regions which are designed too small or cutoff SDD availability too soon may potentially lose SDD market share, while regions which are designed too large or accept orders too late may result in costly operations or failed deliveries, resulting in a loss of customer goodwill. We use a continuous approximation approach to capture average system behavior and derive optimal dynamic service region areas and tactical vehicle dispatching policies which maximize the expected number of SDD orders served per day. Furthermore, we compare such designs to fixed service region designs or capacitated service region designs.
In Chapter 4, we introduce the concept of cycle time considering capacitated vehicle routing problems, which are motivated by the desire to decrease the average time packages spent within a delivery network. Traditional vehicle routing models focus on the resource usage of the system whereas our models instead consider the impact of routing policies on the units being served. We explicitly consider pre-routing waiting times at a depot, total demand-weighted accumulated routing times, vehicle capacity constraints, and designing repeatable delivery routes in our models. We present two set partitioning formulations for such problems and derive efficient solution techniques so that the impact of various design parameters can be assessed.Ph.D
Dynamic ductile to brittle transition in a one-dimensional model of viscoplasticity
We study two closely related, nonlinear models of a viscoplastic solid. These
models capture essential features of plasticity over a wide range of strain
rates and applied stresses. They exhibit inelastic strain relaxation and steady
flow above a well defined yield stress. In this paper, we describe a first step
in exploring the implications of these models for theories of fracture and
related phenomena. We consider a one dimensional problem of decohesion from a
substrate of a membrane that obeys the viscoplastic constitutive equations that
we have constructed. We find that, quite generally, when the yield stress
becomes smaller than some threshold value, the energy required for steady
decohesion becomes a non-monotonic function of the decohesion speed. As a
consequence, steady state decohesion at certain speeds becomes unstable. We
believe that these results are relevant to understanding the ductile to brittle
transition as well as fracture stability.Comment: 10 pages, REVTeX, 12 postscript figure
Luminous Radio Emission from the Superluminous Supernova 2017ens at 3.3 Yr After Explosion
We present the results from a multiyear radio campaign of the superluminous supernova (SLSN) SN 2017ens, which yielded the earliest radio detection of an SLSN to date at the age of ∼3.3 yr after explosion. SN 2017ens was not detected at radio frequencies in the first ∼300 days but reached Lν ≈ 1028 erg s−1 cm−2 Hz−1 at ν ∼ 6 GHz, ∼1250 days post explosion. Interpreting the radio observations in the context of synchrotron radiation from the supernova shock interaction with the circumstellar medium (CSM), we infer an effective mass-loss rate Ṁ ≈ 10−4 M☉ yr−1 at r ∼ 1017 cm from the explosion\u27s site, for a wind speed of vw = 50–60 km s−1 as measured from optical spectra. These findings are consistent with the spectroscopic metamorphosis of SN 2017ens from hydrogen poor to hydrogen rich ∼190 days after explosion reported by Chen et al. SN 2017ens is thus an addition to the sample of hydrogen-poor massive progenitors that explode shortly after having lost their hydrogen envelope. The inferred circumstellar densities, implying a CSM mass up to ∼0.5 M☉, and low velocity of the ejection suggest that binary interactions (in the form of common-envelope evolution and subsequent envelope ejection) play a role in shaping the evolution of the stellar progenitors of SLSNe in the ≲ 500 yr preceding core collapse
Multiwavelength Observations of LS I +61 303 with VERITAS, Swift and RXTE
We present results from a long-term monitoring campaign on the TeV binary LSI
+61 303 with VERITAS at energies above 500 GeV, and in the 2-10 keV hard X-ray
bands with RXTE and Swift, sampling nine 26.5 day orbital cycles between
September 2006 and February 2008. The binary was observed by VERITAS to be
variable, with all integrated observations resulting in a detection at the 8.8
sigma (2006/2007) and 7.3 sigma (2007/2008) significance level for emission
above 500 GeV. The source was detected during active periods with flux values
ranging from 5 to 20% of the Crab Nebula, varying over the course of a single
orbital cycle. Additionally, the observations conducted in the 2007-2008
observing season show marginal evidence (at the 3.6 sigma significance level)
for TeV emission outside of the apastron passage of the compact object around
the Be star. Contemporaneous hard X-ray observations with RXTE and Swift show
large variability with flux values typically varying between 0.5 and 3.0*10^-11
ergs cm^-2 s^-1 over a single orbital cycle. The contemporaneous X-ray and TeV
data are examined and it is shown that the TeV sampling is not dense enough to
detect a correlation between the two bands.Comment: 30 pages, 5 figures, 2 table, Accepted for publication in The
Astrophysical Journa
A critical role for the self-assembly of Amyloid-β1-42 in neurodegeneration
Amyloid β1-42 (Aβ1-42) plays a central role in Alzheimer’s disease. The link between structure, assembly and neuronal toxicity of this peptide is of major current interest but still poorly defined. Here, we explored this relationship by rationally designing a variant form of Aβ1-42 (vAβ1-42) differing in only two amino acids. Unlike Aβ1-42, we found that the variant does not self-assemble, nor is it toxic to neuronal cells. Moreover, while Aβ1-42 oligomers impact on synaptic function, vAβ1-42 does not. In a living animal model system we demonstrate that only Aβ1-42 leads to memory deficits. Our findings underline a key role for peptide sequence in the ability to assemble and form toxic structures. Furthermore, our non-toxic variant satisfies an unmet demand for a closely related control peptide for Aβ1-42 cellular studies of disease pathology, offering a new opportunity to decipher the mechanisms that accompany Aβ1-42-induced toxicity leading to neurodegeneration
A Mildly Relativistic Outflow from the Energetic, Fast-rising Blue Optical Transient CSS161010 in a Dwarf Galaxy
We present X-ray and radio observations of the Fast Blue Optical Transient CRTS-CSS161010 J045834-081803 (CSS161010 hereafter) at t = 69-531 days. CSS161010 shows luminous X-ray (L x ∼ 5 × 1039 erg s-1) and radio (L ν ∼ 1029 erg s-1 Hz-1) emission. The radio emission peaked at ∼100 days post-transient explosion and rapidly decayed. We interpret these observations in the context of synchrotron emission from an expanding blast wave. CSS161010 launched a mildly relativistic outflow with velocity Γβc ≥ 0.55c at ∼100 days. This is faster than the non-relativistic AT 2018cow (Γβc ∼ 0.1c) and closer to ZTF18abvkwla (Γβc ≥ 0.3c at 63 days). The inferred initial kinetic energy of CSS161010 (E k ⪆ 1051 erg) is comparable to that of long gamma-ray bursts, but the ejecta mass that is coupled to the mildly relativistic outflow is significantly larger (∼ 0.01-0.1 M⊙). This is consistent with the lack of observed γ-rays. The luminous X-rays were produced by a different emission component to the synchrotron radio emission. CSS161010 is located at ∼150 Mpc in a dwarf galaxy with stellar mass M * ∼ 107 M o&dot; and specific star formation rate sSFR ∼ 0.3 Gyr-1. This mass is among the lowest inferred for host galaxies of explosive transients from massive stars. Our observations of CSS161010 are consistent with an engine-driven aspherical explosion from a rare evolutionary path of a H-rich stellar progenitor, but we cannot rule out a stellar tidal disruption event on a centrally located intermediate-mass black hole. Regardless of the physical mechanism, CSS161010 establishes the existence of a new class of rare (rate < 0.4% of the local core-collapse supernova rate) H-rich transients that can launch mildly relativistic outflows.</p
Current knowledge, status and future for plant and fungal diversity in Great Britain and the UK Overseas Territories
Societal Impact Statement
We rely on plants and fungi for most aspects of our lives. Yet plants and fungi are under threat, and we risk losing species before we know their identity, roles, and potential uses. Knowing names, distributions, and threats are first steps toward effective conservation action. Accessible products like field guides and online resources engage society, harnessing collective support for conservation. Here, we review current knowledge of the plants and fungi of the UK and UK Overseas Territories, highlighting gaps to help direct future research efforts toward conserving these vital elements of biodiversity.
Summary
This review summarizes current knowledge of the status and threats to the plants and fungi of Great Britain and the UK Overseas Territories (UKOTs). Although the body of knowledge is considerable, the distribution of information varies substantially, and we highlight knowledge gaps. The UK vascular flora is the most well studied and we have a relatively clear picture of its 9,001 native and alien taxa. We have seedbanked 72% of the native and archaeophyte angiosperm taxa and 78% of threatened taxa. Knowledge of the UKOTs flora varies across territories and we report a UKOTs flora comprising 4,093 native and alien taxa. We have conserved 27% of the native flora and 51% of the threatened vascular plants in Kew's Millennium Seed Bank, UK. We need a better understanding of the conservation status of plants in the wild, and progress toward completion or updating national red lists varies. Site‐based protection of key plant assemblages is outlined, and progress in identifying Important Plant Areas analyzed. Knowledge of the non‐vascular flora, especially seaweeds remains patchy, particularly in many UKOTs. The biggest gaps overall are in fungi, particularly non‐lichenized fungi. Considerable investment is needed to fill these knowledge gaps and instigate effective conservation strategies
Luminous Radio Emission from the Superluminous Supernova 2017ens at 3.3 yr after Explosion
We present the results from a multiyear radio campaign of the superluminous supernova (SLSN) SN 2017ens, which yielded the earliest radio detection of an SLSN to date at the age of ∼3.3 yr after explosion. SN 2017ens was not detected at radio frequencies in the first ∼300 days but reached L ν ≈ 1028 erg s−1 cm−2 Hz−1 at ν ∼ 6 GHz, ∼1250 days post explosion. Interpreting the radio observations in the context of synchrotron radiation from the supernova shock interaction with the circumstellar medium (CSM), we infer an effective mass-loss rate M ̇ ≈ 10 − 4 M ☉ yr − 1 at r ∼ 1017 cm from the explosion’s site, for a wind speed of v w = 50-60 km s−1 as measured from optical spectra. These findings are consistent with the spectroscopic metamorphosis of SN 2017ens from hydrogen poor to hydrogen rich ∼190 days after explosion reported by Chen et al. SN 2017ens is thus an addition to the sample of hydrogen-poor massive progenitors that explode shortly after having lost their hydrogen envelope. The inferred circumstellar densities, implying a CSM mass up to ∼0.5 M ☉, and low velocity of the ejection suggest that binary interactions (in the form of common-envelope evolution and subsequent envelope ejection) play a role in shaping the evolution of the stellar progenitors of SLSNe in the ≲500 yr preceding core collapse
Light Microsopy Module, International Space Station Premier Automated Microscope
The Light Microscopy Module (LMM) was launched to the International Space Station (ISS) in 2009 and began science operations in 2010. It continues to support Physical and Biological scientific research on ISS. During 2015, if all goes as planned, five experiments will be completed: [1] Advanced Colloids Experiments with a manual sample base -3 (ACE-M-3), [2] the Advanced Colloids Experiment with a Heated Base -1 (ACE-H-1), [3] (ACE-H-2), [4] the Advanced Plant Experiment -03 (APEX-03), and [5] the Microchannel Diffusion Experiment (MDE). Preliminary results, along with an overview of present and future LMM capabilities will be presented; this includes details on the planned data imaging processing and storage system, along with the confocal upgrade to the core microscope. [1] New York University: Paul Chaikin, Andrew Hollingsworth, and Stefano Sacanna, [2] University of Pennsylvania: Arjun Yodh and Matthew Gratale, [3] a consortium of universities from the State of Kentucky working through the Experimental Program to Stimulate Competitive Research (EPSCoR): Stuart Williams, Gerold Willing, Hemali Rathnayake, et al., [4] from the University of Florida and CASIS: Anna-Lisa Paul and Rob Ferl, and [5] from the Methodist Hospital Research Institute from CASIS: Alessandro Grattoni and Giancarlo Canavese
- …