316 research outputs found

    Generic Supersonic and Hypersonic Configurations

    Get PDF
    Abstract: A geometry generator for preliminary aerodynamic design, parametric optimization and the preprocessing of CFD boundary conditions is presented. With emphasis on supersonic aircraft components, ranging from waverider caret wings to generic lifting bodies derived from recent aerospace research projects, the simple mathematical basis and its consequent use throughout various applications is illustrated

    Causes and evolution of winter polynyas north of Greenland

    Get PDF
    During the 42-year period (1979–2020) of satellite measurements, four major winter (December–March) polynyas have been observed north of Greenland: one in December 1986 and three in the last decade, i.e., February of 2011, 2017, and 2018. The 2018 polynya was unparalleled in its magnitude and duration compared to the three previous events. Given the apparent recent increase in the occurrence of these extreme events, this study aims to examine their evolution and causality, in terms of forced versus natural variability. The limited weather station and remotely sensed sea ice data are analyzed combining with output from the fully coupled Regional Arctic System Model (RASM), including one hindcast and two ensemble simulations. We found that neither the accompanying anomalous warm surface air intrusion nor the ocean below had an impact (i.e., no significant ice melting) on the evolution of the observed winter open-water episodes in the region. Instead, the extreme atmospheric wind forcing resulted in greater sea ice deformation and transport offshore, accounting for the majority of sea ice loss in all four polynyas. Our analysis suggests that strong southerly winds (i.e., northward wind with speeds greater than 10 m s−1) blowing persistently over the study region for at least 2 d or more were required over the study region to mechanically redistribute some of the thickest Arctic sea ice out of the region and thus to create open-water areas (i.e., a latent heat polynya). To assess the role of internal variability versus external forcing of such events, we carried out and examined results from the two RASM ensembles dynamically downscaled with output from the Community Earth System Model (CESM) Decadal Prediction Large Ensemble (DPLE) simulations. Out of 100 winters in each of the two ensembles (initialized 30 years apart: one in December 1985 and another in December 2015), 17 and 16 winter polynyas were produced north of Greenland, respectively. The frequency of polynya occurrence had no apparent sensitivity to the initial sea ice thickness in the study area pointing to internal variability of atmospheric forcing as a dominant cause of winter polynyas north of Greenland. We assert that dynamical downscaling using a high-resolution regional climate model offers a robust tool for process-level examination in space and time, synthesis with limited observations, and probabilistic forecasts of Arctic events, such as the ones being investigated here and elsewhere.</p

    Sea-ice information and forecast needs for industry maritime stakeholders

    Get PDF
    Profound changes in Arctic sea-ice, a growing desire to utilize the Arctic’s abundant natural resources, and the potential competitiveness of Arctic shipping routes, all provide for increased industry marine activity throughout the Arctic Ocean. This is anticipated to result in further challenges for maritime safety. Those operating in ice-infested waters require various types of information for sea-ice and iceberg hazards. Ice information requirements depend on regional needs and whether the stakeholder wants to avoid ice all together, operate near or in the Marginal Ice Zone, or areas within the ice pack. An insight into user needs demonstrates how multiple spatial and temporal resolutions for sea-ice information and forecasts are necessary to provide information to the marine operating community for safety, planning, and situational awareness. Although ship-operators depend on sea-ice information for tactical navigation, stakeholders working in route and capacity planning can benefit from climatological and long-range forecast information at lower spatial and temporal resolutions where the interest is focused on open-water season. The advent of the Polar Code has brought with it additional information requirements, and exposed gaps in capacity and knowledge. Thus, future satellite data sources should be at resolutions that support both tactical and planning activities

    Role of bile acid receptor FXR in development and function of brown adipose tissue

    Get PDF
    Bile acids act as signalling molecules that contribute to maintenance of energy homeostasis in mice and humans. Activation of G-protein-coupled bile acid receptor TGR5 induces energy expenditure in brown adipose tissue (BAT). However, a role for the nuclear bile acid receptor Farnesoid X receptor (FXR) in BAT has remained ambiguous. We aimed to study the potential role of FXR in BAT development and functioning. Here we demonstrate low yet detectable expression of the α1/2 isoforms of FXR in murine BAT that markedly decreases upon cold exposure. Moderate adipose tissue-specific FXR overexpression in mice induces pronounced BAT whitening, presenting with large intracellular lipid droplets and extracellular collagen deposition. Expression of thermogenic marker genes including the target of Tgr5, Dio2, was significantly lower in BAT of chow-fed aP2-hFXR mice compared to wild-type controls. Transcriptomic analysis revealed marked up-regulation of extracellular matrix formation and down-regulation of mitochondrial functions in BAT from aP2-hFXR mice. In addition, markers of cell type lineages deriving from the dermomyotome, such as myocytes, as well as markers of cellular senescence were strongly induced. The response to cold and β3-adrenergic receptor agonism was blunted in these mice, yet resolved BAT whitening. Newborn cholestatic Cyp2c70-/- mice with a human-like bile acid profile also showed distinct BAT whitening and upregulation of myocyte-specific genes, while thermogenic markers were down-regulated. Ucp1 expression inversely correlated with plasma bile acid levels. Therefore, bile acid signalling via FXR has a role in BAT function already early in tissue development. Functionally, FXR activation appears to oppose TGR5-mediated thermogenesis

    Freezing in the Sun

    Get PDF
    When the air is very cold, water at the surface of the ocean freezes, forming sea ice. Parts of the Arctic Ocean are covered by sea ice during the entire year. Often, snow falls onto the sea ice. Despite the cold, many plants and animals can live in the Arctic Ocean, some in the water, and some even in the sea ice. Particularly, algae can live in small bubbles in the sea ice. Like other plants, algae need energy to grow. This energy comes from food and sunlight. But how can the sunlight reach these little algae living inside the sea ice? From the sun, the light must pass through the atmosphere, the snow, and finally the sea ice itself. In this article, we describe how ice algae can live in this special environment and we explain what influences how much light reaches the algae to make them grow

    Farnesoid X Receptor Deficiency Improves Glucose Homeostasis in Mouse Models of Obesity

    Get PDF
    International audienceOBJECTIVE Bile acids (BA) participate in the maintenance of metabolic homeostasis acting through different signaling pathways. The nuclear BA receptor farnesoid X receptor (FXR) regulates pathways in BA, lipid, glucose, and energy metabolism, which become dysregulated in obesity. However, the role of FXR in obesity and associated complications, such as dyslipidemia and insulin resistance, has not been directly assessed. RESEARCH DESIGN AND METHODS Here, we evaluate the consequences of FXR deficiency on body weight development, lipid metabolism, and insulin resistance in murine models of genetic and diet-induced obesity. RESULTS FXR deficiency attenuated body weight gain and reduced adipose tissue mass in both models. Surprisingly, glucose homeostasis improved as a result of an enhanced glucose clearance and adipose tissue insulin sensitivity. In contrast, hepatic insulin sensitivity did not change, and liver steatosis aggravated as a result of the repression of β-oxidation genes. In agreement, liver-specific FXR deficiency did not protect from diet-induced obesity and insulin resistance, indicating a role for nonhepatic FXR in the control of glucose homeostasis in obesity. Decreasing elevated plasma BA concentrations in obese FXR-deficient mice by administration of the BA sequestrant colesevelam improved glucose homeostasis in a FXR-dependent manner, indicating that the observed improvements by FXR deficiency are not a result of indirect effects of altered BA metabolism. CONCLUSIONS Overall, FXR deficiency in obesity beneficially affects body weight development and glucose homeostasis

    Platelet Ice Under Arctic Pack Ice in Winter

    Get PDF
    The formation of platelet ice is well known to occur under Antarctic sea ice, where subice platelet layers form from supercooled ice shelf water. In the Arctic, however, platelet ice formation has not been extensively observed, and its formation and morphology currently remain enigmatic. Here, we present the first comprehensive, long‐term in situ observations of a decimeter thick subice platelet layer under free‐drifting pack ice of the Central Arctic in winter. Observations carried out with a remotely operated underwater vehicle (ROV) during the midwinter leg of the MOSAiC drift expedition provide clear evidence of the growth of platelet ice layers from supercooled water present in the ocean mixed layer. This platelet formation takes place under all ice types present during the surveys. Oceanographic data from autonomous observing platforms lead us to the conclusion that platelet ice formation is a widespread but yet overlooked feature of Arctic winter sea ice growth

    The 1958–2009 Greenland ice sheet surface melt and the mid-tropospheric atmospheric circulation

    Get PDF
    peer reviewedaudience: researcherIn order to assess the impact of the mid-tropospheric circulation over the Greenland ice sheet (GrIS) on surface melt, as simulated by the regional climate model MAR, an automatic Circulation type classification (CTC) based on 500 hPa geopotential height from reanalyses is developed. General circulation correlates significantly with the surface melt anomalies for the summers in the period 1958–2009. The record surface melt events observed during the summers of 2007–2009 are linked to the exceptional persistence of atmospheric circulations favouring warm air advection. The CTC emphasizes that summer 500 hPa circulation patterns have changed since the beginning of the 2000s; this process is partly responsible for the recent warming observed over the GrIS
    corecore