8 research outputs found

    Univerity of Dallas History of Athletics, 1956-2006

    Get PDF
    The University of Dallas is an institution dedicated to the pursuit of excellence. Every facet of the institution is seen in that light. Regarding the relation of the sports program to the central pursuit of the University. Plato\u27s observation is pertinent. Gymnastic and music, in due proportions, he said, are the dispositional base for reason. A disciplined, coordinated body is itself a model of the rational system. This statement, opening the report of the 1984 ad hoc Committee on Sports and Recreation, demonstrates the approach toward athletics that has always existed at the University of Dallas. UD accepts athletic prowess as a good and encourages the pursuit of this good by its students. Throughout the history of athletics at UD there have been good times and bad, but the University has tried its best to support the athletics in its proper place.https://digitalcommons.udallas.edu/historybook/1001/thumbnail.jp

    Epidemiology of Enteroaggregative, Enteropathogenic, and Shiga Toxin-Producing Escherichia coli Among Children Aged <5 Years in 3 Countries in Africa, 2015-2018: Vaccine Impact on Diarrhea in Africa (VIDA) Study.

    Get PDF
    BACKGROUND: To address knowledge gaps regarding diarrheagenic Escherichia coli (DEC) in Africa, we assessed the clinical and epidemiological features of enteroaggregative E. coli (EAEC), enteropathogenic E. coli (EPEC), and Shiga toxin-producing E. coli (STEC) positive children with moderate-to-severe diarrhea (MSD) in Mali, The Gambia, and Kenya. METHODS: Between May 2015 and July 2018, children aged 0-59 months with medically attended MSD and matched controls without diarrhea were enrolled. Stools were tested conventionally using culture and multiplex polymerase chain reaction (PCR), and by quantitative PCR (qPCR). We assessed DEC detection by site, age, clinical characteristics, and enteric coinfection. RESULTS: Among 4840 children with MSD and 6213 matched controls enrolled, 4836 cases and 1 control per case were tested using qPCR. Of the DEC detected with TAC, 61.1% were EAEC, 25.3% atypical EPEC (aEPEC), 22.4% typical EPEC (tEPEC), and 7.2% STEC. Detection was higher in controls than in MSD cases for EAEC (63.9% vs 58.3%, P < .01), aEPEC (27.3% vs 23.3%, P < .01), and STEC (9.3% vs 5.1%, P < .01). EAEC and tEPEC were more frequent in children aged <23 months, aEPEC was similar across age strata, and STEC increased with age. No association between nutritional status at follow-up and DEC pathotypes was found. DEC coinfection with Shigella/enteroinvasive E. coli was more common among cases (P < .01). CONCLUSIONS: No significant association was detected between EAEC, tEPEC, aEPEC, or STEC and MSD using either conventional assay or TAC. Genomic analysis may provide a better definition of the virulence factors associated with diarrheal disease

    Shigella isolates from the global enteric multicenter study inform vaccine development.

    Get PDF
    BACKGROUND: Shigella, a major diarrheal disease pathogen worldwide, is the target of vaccine development. The Global Enteric Multicenter Study (GEMS) investigated burden and etiology of moderate-to-severe diarrheal disease in children aged <60 months and matched controls without diarrhea during 3 years at 4 sites in Africa and 3 in Asia. Shigella was 1 of the 4 most common pathogens across sites and age strata. GEMS Shigella serotypes are reviewed to guide vaccine development. METHODS: Subjects' stool specimens/rectal swabs were transported to site laboratories in transport media and plated onto xylose lysine desoxycholate and MacConkey agar. Suspect Shigella colonies were identified by biochemical tests and agglutination with antisera. Shigella isolates were shipped to the GEMS Reference Laboratory (Baltimore, MD) for confirmation and serotyping of S. flexneri; one-third of isolates were sent to the Centers for Disease Control and Prevention for quality control. RESULTS: Shigella dysenteriae and S. boydii accounted for 5.0% and 5.4%, respectively, of 1130 Shigella case isolates; S. flexneri comprised 65.9% and S. sonnei 23.7%. Five serotypes/subserotypes comprised 89.4% of S. flexneri, including S. flexneri 2a, S. flexneri 6, S. flexneri 3a, S. flexneri 2b, and S. flexneri 1b. CONCLUSIONS: A broad-spectrum Shigella vaccine must protect against S. sonnei and 15 S. flexneri serotypes/subserotypes. A quadrivalent vaccine with O antigens from S. sonnei, S. flexneri 2a, S. flexneri 3a, and S. flexneri 6 can provide broad direct coverage against these most common serotypes and indirect coverage against all but 1 (rare) remaining subserotype through shared S. flexneri group antigens

    Identification and characterization of \u3ci\u3eShigella boydii\u3c/i\u3e 20 serovar nov., a new and emerging \u3ci\u3eShigella\u3c/i\u3e serotype

    Get PDF
    Analysis of 163 putative Shigella isolates from Canada and the USA showed biochemical reactions consistent with Shigella species, although none of the isolates reacted with antiserum raised against any of the well-established or provisional Shigella serotypes. All these isolates, provisionally designated serotype SH108, were positive for the ipaH gene and the invasion-associated locus. All fermented mannitol, were serologically indistinguishable from each other and showed no reaction in antisera prepared against Escherichia coli serotypes O1 to O181. PCR-RFLP analysis of the genes involved in O-antigen synthesis revealed a common pattern among these isolates that was distinct from recognized Shigella serotypes and E. coli. Between 1999 and 2003, isolates from across Canada were submitted to the National Laboratory for Enteric Pathogens for antibiotic susceptibility testing, phage typing and PFGE. These assays revealed heterogeneity among the members of this serotype. Antimicrobial susceptibility testing with seven antibiotics identified six profiles, with 90% (45/50) of the isolates resistant to four or more antibiotics and 72%(36/50) resistant to five or more. All isolates were typable using a panel of 16 phages, with 11 different phage types (PTs) represented. The most common PTs found were PT 3 (64 %), PT 6 (10 %) and PT 16 (6 %). Analysis of Xbal-restricted genomic DNA revealed 16 highly related patterns that were not readily distinguishable from those obtained for some other Shigella serotypes. The World Health Organization Collaborating Center for Shigella has added serotype SH108 to the Shigella scheme as S. boydii serotype 20 (serovar nov.). Strain SH108 (isolate 99-4528) is the reference strain for this serotype
    corecore