569 research outputs found

    The three-body recombination of a condensed Bose gas near a Feshbach resonance

    Full text link
    In this paper, we study the three-body recombination rate of a homogeneous dilute Bose gas with a Feshbach resonance at zero temperature. The ground state and excitations of this system are obtained. The three-body recombination in the ground state is due to the break-up of an atom pair in the quantum depletion and the formation of a molecule by an atom from the broken pair and an atom from the condensate. The rate of this process is in good agreement with the experiment on 23^{23}Na in a wide range of magnetic fields.Comment: 10 pages, 2 figures, to be published in Phys. Rev.

    Sexual Functioning, Desire, and Satisfaction in Women with TBI and Healthy Controls

    Get PDF
    Traumatic brain injury (TBI) can substantially alter many areas of a person\u27s life and there has been little research published regarding sexual functioning in women with TBI. Methods. A total of 58 women (29 with TBI and 29 healthy controls) from Neiva, Colombia, participated. There were no statistically significant differences between groups in sociodemographic characteristics. All 58 women completed the Sexual Quality of Life Questionnaire (SQoL), Female Sexual Functioning Index (FSFI), Sexual Desire Inventory (SDI), and the Sexual Satisfaction Index (ISS). Results. Women with TBI scored statistically significantly lower on the SQoL (p \u3c 0.001), FSFI subscales of desire (p \u3c 0.05), arousal (p \u3c 0.05), lubrication (p \u3c 0.05), orgasm (p \u3c 0.05), and satisfaction (p \u3c 0.05), and the ISS (p \u3c 0.001) than healthy controls. Multiple linear regressions revealed that age was negatively associated with some sexuality measures, while months since the TBI incident were positively associated with these variables. Conclusion. These results disclose that women with TBI do not fare as well as controls in these measures of sexual functioning and were less sexually satisfied. Future research is required to further understand the impact of TBI on sexual function and satisfaction to inform for rehabilitation programs

    Epitope Spreading in Immune-Mediated Glomerulonephritis: The Expanding Target

    Get PDF
    Epitope spreading is a critical mechanism driving the progression of autoimmune glomerulonephritis. This phenomenon, where immune responses broaden from a single epitope to encompass additional targets, contributes to the complexity and severity of diseases such as membranous nephropathy (MN), lupus nephritis (LN), and ANCA-associated vasculitis (AAV). In MN, intramolecular spreading within the phospholipase A2 receptor correlates with a worse prognosis, while LN exemplifies both intra- and intermolecular spreading, exacerbating renal involvement. Similarly, ANCA reactivity in AAV highlights the destructive potential of epitope diversification. Understanding these immunological cascades reveals therapeutic opportunities—targeting early epitope spreading could curb disease progression. Despite promising insights, the clinical utility of epitope spreading as a prognostic tool remains debated. This review provides a complete overview of the current evidence, exploring the dual-edged nature of epitope spreading, the intricate immune mechanisms behind it, and its therapeutic implications. By elucidating these dynamics, we aim to pave the way for more precise, targeted interventions in autoimmune glomerular diseases

    An improved algorithm for satellite orbit decay and re-entry prediction

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1993.Includes bibliographical references (leaves 95-96).by Jon D. Strizzi.M.S

    Evaluation of in vitro SARS-CoV-2 inactivation by a new quaternary ammonium compound: Bromiphen bromide

    Get PDF
    The pneumonia (COVID-19) outbreak caused by the novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which unpredictably exploded in late December of 2019 has stressed the importance of being able to control potential pathogens with the aim of limiting their spread. Although vaccines are well known as a powerful tool for ensuring public health and controlling the pandemic, disinfection and hygiene habits remain crucial to prevent infection from spreading and maintain the barrier, especially when the microorganism can persist and survive on textiles, surfaces, and medical devices. During the coronavirus disease pandemic, around half of the disinfectants authorized by the US Environmental Protection Agency contained quaternary ammonium compounds (QACs); their effectiveness had not been proven. Herein, the in vitro SARS-CoV-2 inactivation by p-bromodomiphen bromide, namely bromiphen (BRO), a new, potent, and fast-acting QAC is reported. This study demonstrates that BRO, with a dose as low as 0.02%, can completely inhibit SARS-CoV-2 replication in just 30 s. Its virucidal activity was 10- and 100-fold more robust compared to other commercially available QACs, namely domiphen bromide and benzalkonium chloride. The critical micellar concentration and the molecular lipophilicity potential surface area support the relevance of the lipophilic nature of these molecules for their activity

    How to Limit Interdialytic Weight Gain in Patients on Maintenance Hemodialysis: State of the Art and Perspectives

    Get PDF
    Background: Interdialytic weight gain (IDWG), defined as the accumulation of salt and water intake between dialysis sessions, is a critical parameter of fluid management and a marker of adherence to dietary and fluid restrictions in hemodialysis patients. Excessive IDWG has been strongly associated with increased cardiovascular risk, including left ventricular hypertrophy, cardiac dysfunction, and cerebrovascular complications. Additionally, it necessitates more aggressive ultrafiltration, potentially compromising hemodynamic stability, impairing quality of life, and escalating healthcare costs. Despite international guidelines recommending an IDWG target of <4–4.5% of body weight, many patients struggle to achieve this due to barriers in adhering to dietary and fluid restrictions. This review explores the current state-of-the-art strategies to mitigate IDWG and evaluates emerging diagnostic and therapeutic perspectives to improve fluid management in dialysis patients. Methods: A literature search was conducted in PubMed/MEDLINE, Scopus, and Web of Science to identify studies on IDWG in hemodialysis. Keywords and MeSH terms were used to retrieve peer-reviewed articles, observational studies, RCTs, meta-analyses, and systematic reviews. Non-English articles, case reports, and conference abstracts were excluded. Study selection followed PRISMA guidelines, with independent screening of titles, abstracts, and full texts. Data extraction focused on IDWG definitions, risk factors, clinical outcomes, and management strategies. Due to study heterogeneity, a narrative synthesis was performed. Relevant data were synthesized thematically to evaluate both established strategies and emerging perspectives. Results: The current literature identifies three principal strategies for IDWG control: cognitive–behavioral interventions, dietary sodium restriction, and dialysis prescription adjustments. While educational programs and behavioral counseling improve adherence, their long-term effectiveness remains constrained by patient compliance and logistical challenges. Similarly, low-sodium diets, despite reducing thirst, face barriers to adherence and potential nutritional concerns. Adjustments in dialysate sodium concentration have yielded conflicting results, with concerns regarding hemodynamic instability and intradialytic hypotension. Given these limitations, alternative approaches are emerging. Thirst modulation strategies, including chewing gum to stimulate salivation and acupuncture for autonomic regulation, offer potential benefits in reducing excessive fluid intake. Additionally, technological innovations, such as mobile applications and telemonitoring, enhance self-management by providing real-time feedback on fluid intake. Biofeedback-driven dialysis systems enable dynamic ultrafiltration adjustments, improving fluid removal efficiency while minimizing hemodynamic instability. Artificial intelligence (AI) is advancing predictive analytics by integrating wearable bioimpedance sensors and dialysis data to anticipate fluid overload and refine individualized dialysis prescriptions, driving precision-based volume management. Finally, optimizing dialysis frequency and duration has shown promise in achieving better fluid balance and cardiovascular stability, suggesting that a personalized, multimodal approach is essential for effective IDWG management. Conclusions: Despite decades of research, IDWG remains a persistent challenge in hemodialysis, requiring a multifaceted, patient-centered approach. While traditional interventions provide partial solutions, integrating thirst modulation strategies, real-time monitoring, biofeedback dialysis adjustments, and AI-driven predictive tools represent the next frontier in fluid management. Future research should focus on long-term feasibility, patient adherence, and clinical efficacy, ensuring these innovations translate into tangible improvements in quality of life and cardiovascular health for dialysis patients

    Mena deficiency delays tumor progression and decreases metastasis in polyoma middle-T transgenic mouse mammary tumors

    Get PDF
    Introduction The actin binding protein Mammalian enabled (Mena), has been implicated in the metastatic progression of solid tumors in humans. Mena expression level in primary tumors is correlated with metastasis in breast, cervical, colorectal and pancreatic cancers. Cells expressing high Mena levels are part of the tumor microenvironment for metastasis (TMEM), an anatomical structure that is predictive for risk of breast cancer metastasis. Previously we have shown that forced expression of Mena adenocarcinoma cells enhances invasion and metastasis in xenograft mice. Whether Mena is required for tumor progression is still unknown. Here we report the effects of Mena deficiency on tumor progression, metastasis and on normal mammary gland development. Methods To investigate the role of Mena in tumor progression and metastasis, Mena deficient mice were intercrossed with mice carrying a transgene expressing the polyoma middle T oncoprotein, driven by the mouse mammary tumor virus. The progeny were investigated for the effects of Mena deficiency on tumor progression via staging of primary mammary tumors and by evaluation of morbidity. Stages of metastatic progression were investigated using an in vivo invasion assay, intravital multiphoton microscopy, circulating tumor cell burden, and lung metastases. Mammary gland development was studied in whole mount mammary glands of wild type and Mena deficient mice. Results Mena deficiency decreased morbidity and metastatic dissemination. Loss of Mena increased mammary tumor latency but had no affect on mammary tumor burden or histologic progression to carcinoma. Elimination of Mena also significantly decreased epidermal growth factor (EGF) induced in vivo invasion, in vivo motility, intravasation and metastasis. Non-tumor bearing mice deficient for Mena also showed defects in mammary gland terminal end bud formation and branching. Conclusions Deficiency of Mena decreases metastasis by slowing tumor progression and reducing tumor cell invasion and intravasation. Mena deficiency during development causes defects in invasive processes involved in mammary gland development. These findings suggest that functional intervention targeting Mena in breast cancer patients may provide a valuable treatment option to delay tumor progression and decrease invasion and metastatic spread leading to an improved prognostic outcome.National Cancer Institute (U.S.). Integrative Cancer Biology Program (grant U54 CA112967)Virginia and D.K. Ludwig Fund for Cancer Researc

    Role of genetic polymorphisms in tumour angiogenesis

    Get PDF
    Angiogenesis plays a crucial role in the development, growth and spread of solid tumours. Pro- and anti-angiogenic factors are abnormally expressed in tumours, influencing tumour angiogenesis, growth and progression. Polymorphisms in genes encoding angiogenic factors or their receptors may alter protein expression and/or activity. This article reviews the literature to determine the possible role of angiogenesis-related polymorphisms in cancer. Further research studies in this potentially crucial area of tumour biology are proposed

    Antiviral Effect of Erdosteine in Cells Infected with Human Respiratory Viruses

    Get PDF
    Respiratory viral infections trigger immune and inflammatory responses that can be associated with excessive oxidative stress, glutathione (GSH) depletion, and a cytokine storm that drives virus-induced cell/tissue damage and severe disease. Erdosteine is a thiol-based drug with proven mucolytic, anti-inflammatory, antioxidant, and antibacterial properties, but less is known about its antiviral effects. We performed in vitro studies to investigate the antiviral and anti-inflammatory activity of erdosteine in A549-hACE2 human lung epithelial cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or respiratory syncytial virus (RSV) and in Caco-2 human colon carcinoma cells infected with influenza A virus (H1N1). The cells were treated with different concentrations of erdosteine or its active metabolite 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MET-1) before and after viral infection. The viral replication/load in the cell culture supernatants was measured by real-time quantitative polymerase chain reaction (RT-qPCR) assay and digital droplet PCR. The gene expression of innate immune response signaling pathways and oxidative stress was analyzed by reverse transcription PCR custom-array. The results showed that erdosteine and its active metabolite, at concentrations consistent with an approved therapeutic human dosage, were not directly cytotoxic and had significant antiviral effects in cells pre-infected with SARS-CoV-2, RSV, and H1N1. The transcriptome analysis showed that erdosteine activated innate immune responses by stimulating overexpression of type I interferon and inflammasome pathways and modulated oxidative stress by inducing the modulation of oxidative stress and GSH pathways. These findings suggest that erdosteine may be a useful treatment for respiratory viral infections
    corecore