994 research outputs found

    Earliest Directly-Dated Human Skull-Cups

    Get PDF
    The use of human braincases as drinking cups and containers has extensive historic and ethnographic documentation, but archaeological examples are extremely rare. In the Upper Palaeolithic of western Europe, cut-marked and broken human bones are widespread in the Magdalenian (∼15 to 12,000 years BP) and skull-cup preparation is an element of this tradition

    The naming of Homo bodoensis by Roksandic and colleagues does not resolve issues surrounding Middle Pleistocene human evolution

    Full text link
    Roksandic et al. (2022) proposed the new species name Homo bodoensis as a replacement name for Homo rhodesiensis Woodward, 1921, because they felt it was poorly and variably defined and was linked to sociopolitical baggage. However, the International Code of Zoological Nomenclature includes regulations on how and when such name changes are allowed, and Roksandic et al.\u27s arguments meet none of these requirements. It is not permitted to change a name solely because of variable (or erroneous) later use once it has been originally defined correctly, nor can a name be modified because it is offensive to one or more authors or to be politically expedient. We discuss past usage of H. rhodesiensis and the relevant nomenclatural procedures, the proposed evolutionary position of H. bodoensis, and issues raised about decolonizing paleoanthropology. We reject H. bodoensis as a junior synonym, with no value from its inception

    Major transitions in human evolution.

    Get PDF
    Evolutionary problems are often considered in terms of 'origins', and research in human evolution seen as a search for human origins. However, evolution, including human evolution, is a process of transitions from one state to another, and so questions are best put in terms of understanding the nature of those transitions. This paper discusses how the contributions to the themed issue 'Major transitions in human evolution' throw light on the pattern of change in hominin evolution. Four questions are addressed: (1) Is there a major divide between early (australopithecine) and later (Homo) evolution? (2) Does the pattern of change fit a model of short transformations, or gradual evolution? (3) Why is the role of Africa so prominent? (4) How are different aspects of adaptation-genes, phenotypes and behaviour-integrated across the transitions? The importance of developing technologies and approaches and the enduring role of fieldwork are emphasized.This article is part of the themed issue 'Major transitions in human evolution'

    The effect of barium titanate ceramic loading on the stress relaxation behavior of barium titanate-silicone elastomer composites

    Get PDF
    The stress relaxation behavior of barium titanate (BTO)-elastomer (Ecoflex) composites, as used in large strain sensors, is studied using the generalized Maxwell-Wiechert model. In this article, we examine the stress relaxation behavior of ceramic polymer composites by conducting stress relaxation tests on samples prepared with varying the particle loading by 0, 10, 20, 30, and 40 wt% of 100 and 200 nm BTO ceramic particles embedded in a Ecoflex silicone-based hyperelastic elastomer. The influence of BTO on the Maxwell-Wiechert model parameters was studied through the stress relaxation results. While a pristine Ecoflex silicone elastomer is predominantly a hyperelastic material, the addition of BTO made the composite behave as a visco-hyperelastic material. However, this behavior was shown to have a negligible effect on the electrical sensing performance of the large strain sensor.</p

    Evolution of the base of the brain in highly encephalized human species

    Get PDF
    The increase of brain size relative to body size-encephalization-is intimately linked with human evolution. However, two genetically different evolutionary lineages, Neanderthals and modern humans, have produced similarly large-brained human species. Thus, understanding human brain evolution should include research into specific cerebral reorganization, possibly reflected by brain shape changes. Here we exploit developmental integration between the brain and its underlying skeletal base to test hypotheses about brain evolution in Homo. Three-dimensional geometric morphometric analyses of endobasicranial shape reveal previously undocumented details of evolutionary changes in Homo sapiens. Larger olfactory bulbs, relatively wider orbitofrontal cortex, relatively increased and forward projecting temporal lobe poles appear unique to modern humans. Such brain reorganization, beside physical consequences for overall skull shape, might have contributed to the evolution of H. sapiens' learning and social capacities, in which higher olfactory functions and its cognitive, neurological behavioral implications could have been hitherto underestimated factors. © 2011 Macmillan Publishers Limited. All rights reserved.Peer Reviewe

    A Computational Model of the Development of Separate Representations of Facial Identity and Expression in the Primate Visual System

    Get PDF
    Experimental studies have provided evidence that the visual processing areas of the primate brain represent facial identity and facial expression within different subpopulations of neurons. For example, in non-human primates there is evidence that cells within the inferior temporal gyrus (TE) respond primarily to facial identity, while cells within the superior temporal sulcus (STS) respond to facial expression. More recently, it has been found that the orbitofrontal cortex (OFC) of non-human primates contains some cells that respond exclusively to changes in facial identity, while other cells respond exclusively to facial expression. How might the primate visual system develop physically separate representations of facial identity and expression given that the visual system is always exposed to simultaneous combinations of facial identity and expression during learning? In this paper, a biologically plausible neural network model, VisNet, of the ventral visual pathway is trained on a set of carefully-designed cartoon faces with different identities and expressions. The VisNet model architecture is composed of a hierarchical series of four Self-Organising Maps (SOMs), with associative learning in the feedforward synaptic connections between successive layers. During learning, the network develops separate clusters of cells that respond exclusively to either facial identity or facial expression. We interpret the performance of the network in terms of the learning properties of SOMs, which are able to exploit the statistical indendependence between facial identity and expression
    corecore