57 research outputs found

    A Rapid Survey of the Compatibility of Selected Seal Materials with Conventional and Semi-Synthetic JP-8

    Get PDF
    Since the synthesis of a liquid hydrocarbon fuel from coal by Franz Fischer and Hans Tropsch in 1923, there has been cyclic interest in developing this fuel for military and commercial applications. In recent years the U.S. Department of Defense has taken interest in producing a unified battlespace fuel using the Fischer Tropsch (FT) process for a variety of reasons including cost, quality, and logistics. In the past year there has been a particular emphasis on moving quickly to demonstrate that an FT fuel can be used in the form of a blend with conventional petroleum-derived jet fuel. The initial objective is to employ this semi-synthetic fuel with blend ratios as high as 50 percent FT with longer range goals to use even high blend ratios and ultimately a fully synthetic jet fuel. A significant concern associated with the use of a semi-synthetic jet fuel with high FT blend ratios is the effect these low aromatic fuels will have on fuel-wetted polymeric materials, most notably seals and sealants. These materials typically swell and soften to some degree when exposed to jet fuel and the aromatic content of these fuels contribute to this effect. Semi-synthetic jet fuels with very low aromatic contents may cause seals and sealants to shrink and harden leading to acute or chronic failure. Unfortunately, most of the material qualification tests are more concerned with excessive swelling than shrinkage and there is little guidance offered as to an acceptable level of shrinkage or other changes in physical properties related to low aromatic content. Given the pressing need for guidance data, a program was developed to rapidly survey the volume swell of selected fuel-wetted materials in a range of conventional and semi-synthetic jet fuels and through a statistical analysis to make a determination as to whether there was a basis to be concerned about using fuels with FT blend ratios as high as 50 percent. Concurrent with this analysis data was obtained as to the composition of the fuel absorbed in fuel-wetted materials through the use of GC-MS analysis of swollen samples as well as other supporting data. In this presentation the authors will present a summary of the results of the volume swell and fuel absorbed by selected O-rings and sealants as well as a description of the measurement protocols developed for this program

    A double-blind, placebo-controlled, phase II, randomized study of lovastatin therapy in the treatment of mildly active rheumatoid arthritis

    Get PDF
    © 2019 The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. 3-hydroxy-3-methylglutaryl coenzyme-A (HMG Co-A) reductase inhibitors (statins) are standard treatment for hyperlipidaemia. In addition to lipid-lowering abilities, statins exhibit multiple anti-inflammatory effects. The objectives of this study were to determine whether treatment of patients with RA with lovastatin decreased CRP or reduced disease activity. Methods: We conducted a randomized double-blind placebo-controlled 12 week trial of lovastatin vs placebo in 64 RA patients with mild clinical disease activity but an elevated CRP. The primary efficacy end point was the reduction in mean log CRP. Secondary end points included disease activity, RF and anti-CCP antibody titres. Mechanistic end points included levels of serum cytokines. Safety was assessed; hepatic and muscle toxicities were of particular interest. Results: Baseline features were similar between groups. No significant difference in mean log CRP reduction between the two groups was observed, and disease activity did not change from baseline in either treatment group. Mechanistic analyses did not reveal significant changes in any biomarkers. A post hoc analysis of subjects not using biologic therapy demonstrated a significantly greater proportion achieving ≥20% reduction in CRP from baseline in the lovastatin group compared with placebo (P-value = 0.007). No difference was observed in subjects receiving biologics. Lovastatin was well tolerated with no serious safety concerns. Conclusion: This study showed no anti-inflammatory or clinical effects on RA disease activity after 12 weeks of treatment with lovastatin. Lovastatin had a modest effect on CRP in subjects not using biologics, suggesting statins may be anti-inflammatory in selected patients. Trial registration: ClinicalTrials.gov, http://clinicaltrials.gov, NCT00302952

    Flow and chemical kinetics simulations of endothermic fuels

    No full text
    Advanced aircraft engines are reaching a practical heat transfer limit beyond which the convective heat transfer provided by hydrocarbon fuels is no longer adequate. One solution is to use an endothermic fuel that absorbs heat through chemical reactions. This paper describes the development of a two-dimensional computational model of the heat and mass transport associated with a flowing fuel using a unique global chemical kinetics model. Most past models do not account for changes in the chemical composition of a flowing fuel and also do not adequately predict flow properties in the supercritical regime. The two-dimensional computational model presented here calculates the changing flow properties of a supercritical reacting fuel by use of experimentally derived proportional product distributions. The present calculations are validated by measured experimental data obtained from a flow reactor of mildly cracked n-decane. It is believed that these simulations will assist the fundamental understanding of high temperature fuel flow experiments

    Chemical Analysis of Jet Fuel Polar, Heteroatomic Species via High-Performance Liquid Chromatography with Electrospray Ionization-Mass Spectrometric Detection

    No full text
    High-performance liquid chromatography (HPLC) with electrospray ionization–mass spectrometry (ESI–MS) was used to identify several classes of heteroatomic, polar compounds containing oxygen, nitrogen, and sulfur in a variety of jet fuel samples. While nitrogen, oxygen, and sulfur compounds are present only at low concentrations in jet fuel, they contribute significantly to some important fuel properties. These trace, heteroatomic species can provide positive (e.g., improved lubricity) or negative (e.g., reduced thermal stability) impacts. Reversed-phase liquid chromatography with ESI–MS detection allows for the polar components to be selectively ionized and subsequently identified, despite the complex hydrocarbon fuel matrix. Phenols and carbazoles are detected in negative-ion [M – H]− mode, while anilines, pyridines, indoles, and quinolines are observed in positive-ion [M + H]+ mode. Accurate mass measurements allow for the molecular formula of the polar components to be determined, while different structural classes of isomeric compounds could be determined via HPLC separation and the formation of derivatives. Derivatization shifts the retention time, species masses, and potentially, the ion charge formed of specific compound classes, allowing them to be positively identified. The usefulness and limits of HPLC with ESI–MS for quantitation of these fuel polar, heteroatomic species are also explored
    • …
    corecore