2,889 research outputs found
Prospective Memory Performance in Simulated Air Traffic Control: Robust to Interruptions but Impaired by Retention Interval
OBJECTIVE: To examine the effects of interruptions and retention interval on prospective memory for deferred tasks in simulated air traffic control. BACKGROUND: In many safety-critical environments, operators need to remember to perform a deferred task, which requires prospective memory. Laboratory experiments suggest that extended prospective memory retention intervals, and interruptions in those retention intervals, could impair prospective memory performance. METHOD: Participants managed a simulated air traffic control sector. Participants were sometimes instructed to perform a deferred handoff task, requiring them to deviate from a routine procedure. We manipulated whether an interruption occurred during the prospective memory retention interval or not, the length of the retention interval (37-117 s), and the temporal proximity of the interruption to deferred task encoding and execution. We also measured performance on ongoing tasks. RESULTS: Increasing retention intervals (37-117 s) decreased the probability of remembering to perform the deferred task. Costs to ongoing conflict detection accuracy and routine handoff speed were observed when a prospective memory intention had to be maintained. Interruptions did not affect individuals' speed or accuracy on the deferred task. CONCLUSION: Longer retention intervals increase risk of prospective memory error and of ongoing task performance being impaired by cognitive load; however, prospective memory can be robust to effects of interruptions when the task environment provides cuing and offloading. APPLICATION: To support operators in performing complex and dynamic tasks, prospective memory demands should be reduced, and the retention interval of deferred tasks should be kept as short as possible
FUSE Observations of Outflowing OVI in the Dwarf Starburst Galaxy NGC1705
We report FUSE far-UV spectroscopy of the prototypical dwarf starburst galaxy
NGC 1705. These data allow us for the first time to probe the coronal-phase gas
(T = 10E5 to 10E6 K) that may dominate the radiative cooling of the
supernova-heated ISM and thereby determine the dynamical evolution of
starburst-driven outflows. We detect a broad (100 km/s) and blueshifted (by 80
km/s) OVI absorption-line arising in the previously-known galactic outflow. The
properties of the OVI absorption are inconsistent with the standard superbubble
model in which this gas arises in a conductive interface inside the outer
shell. We show that the superbubble in NGC 1705 is blowing out of the galaxy
ISM. During blow-out, coronal-phase gas can be created by hydrodynamical mixing
as hot gas rushes out through fissures in the fragmenting shell of cool gas. As
the coronal gas cools radiatively, it can naturally produce the observed OVI
column density and outflow speed. The OVI data show that the cooling rate in
the coronal-phase gas is less than about 10% of the supernova heating rate.
Since the X-ray luminosity from hotter gas is even smaller, we conclude that
radiative losses are insignificant. The outflow should be able to vent its
metals and kinetic energy out of the galaxy. This process has potentially
important implications for the evolution of dwarf galaxies and the IGM.Comment: ApJ (in press
X-ray Constraints on Accretion and Starburst Processes in Galactic Nuclei I. Spectral Results
The results of a 0.4-10.0 keV ASCA spectral analysis of a sample of
low-luminosity AGN (LLAGN; M51, NGC 3147, NGC 4258), low-ionization nuclear
emission line regions (LINERs; NGC 3079, NGC 3310, NGC 3998, NGC 4579, NGC
4594) and starburst galaxies (M82, NGC 253, NGC 3628 and NGC 6946) are
presented. In spite of the heterogeneous optical classifications of these
galaxies, the X-ray spectra are fit well by a ``canonical'' model consisting of
an optically-thin Raymond-Smith plasma ``soft'' component with T ~ 7 x 10^6 K
and a ``hard'' component that can be modeled by either a power-law with a
photon index ~ 1.7 or a thermal bremsstrahlung with T ~ 6 x 10^7 K. The
soft-component 0.4-10 keV instrinsic luminosities tend to be on the order
10^39-40 ergs/s while the hard-component luminosities tend to be on the order
of 10^40-41 ergs/s. The detection of line emission is discussed. An analysis of
the short-term variability properties was given in Ptak et al. (1998) and
detailed interpretation of these results will be given in Paper II. (abridged)Comment: Accepted for Jan. 99 issue of ApJS. 35 pages with embedded postscript
figures. 8 large tables included externally as postscript file
Handling Qualities Assessment of a Pilot Cueing System for Autorotation Maneuvers
This paper details the design and limited flight testing of a preliminary system for visual pilot cueing during autorotation maneuvers. The cueing system is based on a fully-autonomous, multi-phase autorotation control law that has been shown to successfully achieve autonomous autorotation landing in unmanned helicopters. To transition this control law to manned systems, it is employed within a cockpit display to drive visual markers which indicate desired collective pitch and longitudinal cyclic positions throughout the entire maneuver, from autorotation entry to touchdown. A series of simulator flight experiments performed at University of Liverpoolâs HELIFLIGHT-R simulator are documented, in which pilots attempt autorotation with and without the pilot cueing system in both good and degraded visual environments. Performance of the pilot cueing system is evaluated based on both subjective pilot feedback and objective measurements of landing survivability metrics, demonstrating suitable preliminary performance of the system
An X-ray Mini-survey of Nearby Edge-on Starburst Galaxies II. The Question of Metal Abundance
(abbreviated) We have undertaken an X-ray survey of a far-infrared flux
limited sample of seven nearby edge-on starburst galaxies. Here, we examine the
two X-ray-brightest sample members NGC 253 and M 82 in a self-consistent
manner, taking account of the spatial distribution of the X-ray emission in
choosing our spectral models. There is significant X-ray absorption in the disk
of NGC 253. When this is accounted for we find that multi-temperature thermal
plasma models with significant underlying soft X-ray absorption are more
consistent with the imaging data than single-temperature models with highly
subsolar abundances or models with minimal absorption and non-equilibrium
thermal ionization conditions. Our models do not require absolute abundances
that are inconsistent with solar values or unusually supersolar ratios of the
alpha-burning elements with respect to Fe (as claimed previously). We conclude
that with current data, the technique of measuring abundances in starburst
galaxies via X-ray spectral modeling is highly uncertain.
Based on the point-like nature of much of the X-ray emission in the PSPC
hard-band image of NGC 253, we suggest that a significant fraction of the
``extended'' X-ray emission in the 3-10 keV band seen along the disk of the
galaxy with ASCA and BeppoSAX (Cappi et al.) is comprised of discrete sources
in the disk, as opposed to purely diffuse, hot gas. This could explain the low
Fe abundances of ~1/4 solar derived for pure thermal models.Comment: (accepted for publication in the Astrophysical Journal
The Asymmetric Wind in M82
We have obtained detailed imaging Fabry-Perot observations of the nearby
galaxy M82, in order to understand the physical association between the
high-velocity outflow and the starburst nucleus. The observed velocities of the
emitting gas in M82 reveal a bipolar outflow of material, originating from the
bright starburst regions in the galaxy's inner disk, but misaligned with
respect to the galaxy spin axis. The deprojected outflow velocity increases
with radius from 525 to 655 km/s. Spectral lines show double components in the
centers of the outflowing lobes, with the H-alpha line split by ~300 km/s over
a region almost a kiloparsec in size. The filaments are not simple surfaces of
revolution, nor is the emission distributed evenly over the surfaces. We model
these lobes as a composite of cylindrical and conical structures, collimated in
the inner ~500 pc but expanding at a larger opening angle of ~25 degrees beyond
that radius. We compare our kinematic model with simulations of
starburst-driven winds in which disk material surrounding the source is
entrained by the wind. The data also reveal a remarkably low [NII]/H-alpha
ratio in the region of the outflow, indicating that photoionization by the
nuclear starburst may play a significant role in the excitation of the optical
filament gas, particularly near the nucleus.Comment: 42 pages AASTeX with 16 figures; accepted for publication in ApJ;
figures reformatted for better printin
Spatially Resolved Spitzer-IRS Spectroscopy of the Central Region of M82
We present high spatial resolution (~ 35 parsec) 5-38 um spectra of the
central region of M82, taken with the Spitzer Infrared Spectrograph. From these
spectra we determined the fluxes and equivalent widths of key diagnostic
features, such as the [NeII]12.8um, [NeIII]15.5um, and H_2 S(1)17.03um lines,
and the broad mid-IR polycyclic aromatic hydrocarbon (PAH) emission features in
six representative regions and analysed the spatial distribution of these lines
and their ratios across the central region. We find a good correlation of the
dust extinction with the CO 1-0 emission. The PAH emission follows closely the
ionization structure along the galactic disk. The observed variations of the
diagnostic PAH ratios across M82 can be explained by extinction effects, within
systematic uncertainties. The 16-18um PAH complex is very prominent, and its
equivalent width is enhanced outwards from the galactic plane. We interpret
this as a consequence of the variation of the UV radiation field. The EWs of
the 11.3um PAH feature and the H_2 S(1) line correlate closely, and we conclude
that shocks in the outflow regions have no measurable influence on the H_2
emission. The [NeIII]/[NeII] ratio is on average low at ~0.18, and shows little
variations across the plane, indicating that the dominant stellar population is
evolved (5 - 6 Myr) and well distributed. There is a slight increase of the
ratio with distance from the galactic plane of M82 which we attribute to a
decrease in gas density. Our observations indicate that the star formation rate
has decreased significantly in the last 5 Myr. The quantities of dust and
molecular gas in the central area of the galaxy argue against starvation and
for negative feedback processes, observable through the strong extra-planar
outflows.Comment: 15 pages, 12 figures, 3 tables, ApJ, emulateap
Very Extended X-ray and H-alpha Emission in M82: Implications for the Superwind Phenomenon
We discuss the properties and implications of a 3.7x0.9 kpc region of
spatially-coincident X-ray and H-alpha emission about 11.6 kpc to the north of
the galaxy M82 previously discussed by Devine and Bally (1999). The PSPC X-ray
spectrum is fit by thermal plasma (kT=0.80+-0.17 keV) absorbed by only the
Galactic foreground column density. We evaluate the relationship of the
X-ray/H-alpha ridge to the M82 superwind. The main properties of the X-ray
emission can all be explained as being due to shock-heating driven as the
superwind encounters a massive ionized cloud in the halo of M82. This encounter
drives a slow shock into the cloud, which contributes to the excitation of the
observed H-alpha emission. At the same time, a fast bow-shock develops in the
superwind just upstream of the cloud, and this produces the observed X-ray
emission. This interpretation would imply that the superwind has an outflow
speed of roughly 800 km/s, consistent with indirect estimates based on its
general X-ray properties and the kinematics of the inner kpc-scale region of
H-alpha filaments. The gas in the M82 ridge is roughly two orders-of-magnitude
hotter than the minimum "escape temperature" at this radius, so this gas will
not be retained by M82.
(abridged)Comment: 24 pages (latex), 3 figures (2 gif files and one postscript),
accepted for publication in Part 1 of The Astrophysical Journa
- âŠ