38 research outputs found

    N-glycans of human amniotic fluid transferrin stimulate progesterone production in human first trimester trophoblast cells in vitro

    Get PDF
    Aims: During pregnancy, the placenta produces a variety of steroid hormones and proteins. Several of these substances have been shown to exert immunomodulatory effects. Progesterone is thought to mediate some of these effects by regulating uterine responsiveness. The aim of this study was to clarify the effect of amniotic fluid transferrin and its N-glycans on the release of progesterone by first trimester trophoblast cells in vitro. Methods: Cytotrophoblast cells were prepared from human first trimester placentae by trypsin-DNAse dispersion of villous tissue followed by a percoll gradient centrifugation and depletion of CD45 positive cells by magnetic cell sorting. Trophoblasts were incubated with varying concentrations (50-300 mug/ml) of transferrin from human amniotic fluid and serum as well as with N-glycans obtained from amniotic fluid transferrin. Culture supernatants were assayed for progesterone by enzyme-immunometric methods. Results: The release of progesterone increased in amniotic fluid transferrin- and N-glycan-treated trophoblast cell cultures compared to untreated trophoblast cells. There was no stimulating effect of serum transferrin on the progesterone production of trophoblast cells. Conclusions: The results suggest that amnion-transferrin and especially its N-glycans modulate the endocrine function of trophoblasts in culture by up regulating progesterone secretion

    Solubility of iron in the Southern Ocean

    Get PDF
    Iron solubility (cFeS) ranged from 0.4 to 1.5 nmol L−1, decreasing from south to north in three different Southern Ocean zones (the Coastal Zone, the Antarctic Zone, and the Polar Frontal Zone plus the Subantarctic Zone). This decrease was at times correlated with an increase in temperature. Organic Fe solubility (cFeS,org), which was obtained by subtracting from total measured Fe solubility the solubility of inorganic species of iron (Fe) at the measurement temperature (20°C), ranged from 0.3 to 1.3 nmol L−1, representing an average of 32 ± 14% of the concentration of ligands in the dissolved size fraction as determined via competitive ligand exchange–absorptive cathodic stripping voltammetry (barring a handful of extremely high values from a transect run to the east of Prydz Bay). Values of cFeS were mainly lower than the predicted value for inorganic Fe solubility at the in situ temperature. Total in situ Fe solubility (cFeS,adj) was therefore estimated by adjusting for inorganic Fe solubility at in situ temperatures (between −2°C and +18°C). Because in situ temperatures in the Antarctic Circumpolar Current were mostly lower than +3°C, such cFeS,adj values, ranging from 0.5 to 1.8 nmol L−1, were roughly twice as large as cFeS,org. The adjustment relies heavily on model calculations of inorganic Fe solubility but, if correct, indicates that the bulk of the solubility of Fe in the cold waters of the Southern Ocean is tied to the solubility of inorganic Fe rather than to Fe ligands in the soluble size fraction

    Impacts of dust deposition on dissolved trace metal concentrations (Mn, Al and Fe) during a mesocosm experiment

    Get PDF
    The deposition of atmospheric dust is the primary process supplying trace elements abundant in crustal rocks (e.g. Al, Mn and Fe) to the surface ocean. Upon deposition, the residence time in surface waters for each of these elements differs according to their chemical speciation and biological utilization. Presently, however, the chemical and physical processes occurring after atmospheric deposition are poorly constrained, principally because of the difficulty in following natural dust events in situ. In the present work we examined the temporal changes in the biogeochemistry of crustal metals (in particular Al, Mn and Fe) after an artificial dust deposition event. The experiment was contained inside trace metal clean mesocosms (0–12.5 m depths) deployed in the surface waters of the northwestern Mediterranean, close to the coast of Corsica within the frame of the DUNE project (a DUst experiment in a low Nutrient, low chlorophyll Ecosystem). Two consecutive artificial dust deposition events, each mimicking a wet deposition of 10 g m−2 of dust, were performed during the course of this DUNE-2 experiment. The changes in dissolved manganese (Mn), iron (Fe) and aluminum (Al) concentrations were followed immediately after the seeding with dust and over the following week. The Mn, Fe and Al inventories and loss or dissolution rates were determined. The evolution of the inventories after the two consecutive additions of dust showed distinct behaviors for dissolved Mn, Al and Fe. Even though the mixing conditions differed from one seeding to the other, Mn and Al showed clear increases directly after both seedings due to dissolution processes. Three days after the dust additions, Al concentrations decreased as a consequence of scavenging on sinking particles. Al appeared to be highly affected by the concentrations of biogenic particles, with an order of magnitude difference in its loss rates related to the increase of biomass after the addition of dust. In the case of dissolved Fe, it appears that the first dust addition resulted in a decrease as it was scavenged by sinking dust particles, whereas the second seeding induced dissolution of Fe from the dust particles due to the excess Fe binding ligand concentrations present at that time. This difference, which might be related to a change in Fe binding ligand concentration in the mesocosms, highlights the complex processes that control the solubility of Fe. Based on the inventories at the mesocosm scale, the estimations of the fractional solubility of metals from dust particles in seawater were 1.44 ± 0.19% and 0.91 ± 0.83% for Al and 41 ± 9% and 27 ± 19% for Mn for the first and the second dust addition. These values are in good agreement with laboratory-based estimates. For Fe no fractional solubility was obtained after the first seeding, but 0.12 ± 0.03% was estimated after the second seeding. Overall, the trace metal dataset presented here makes a significant contribution to enhancing our knowledge on the processes influencing trace metal release from Saharan dust and the subsequent processes of bio-uptake and scavenging in a low nutrient, low chlorophyll are

    Regeneration of Fe(II) during EIFeX and SOFeX

    Get PDF
    Investigations into Fe(II) cycling during two Southern Ocean mesoscale iron enrichment experiments, SOFeX and EIFeX, clearly show the importance of Fe(II) to iron speciation during these experiments. In both cases the added Fe(II) persisted significantly longer than its expected oxidation time indicating a significant Fe reduction process at work. During EIFeX diel studies showed a strong photochemically induced cycle in Fe(II) production in sunlit surface waters. Our results suggest that the photochemical cycling of iron may also be important in unfertilized waters of the Southern Ocean

    Development and bioorthogonal activation of palladium-labile prodrugs of gemcitabine

    Get PDF
    Bioorthogonal chemistry has become one of the main driving forces in current chemical biology, inspiring the search for novel biocompatible chemospecific reactions for the past decade. Alongside the well-established labeling strategies that originated the bioorthogonal paradigm, we have recently proposed the use of heterogeneous palladium chemistry and bioorthogonal Pd<sup>0</sup>-labile prodrugs to develop spatially targeted therapies. Herein, we report the generation of biologically inert precursors of cytotoxic gemcitabine by introducing Pd<sup>0</sup>-cleavable groups in positions that are mechanistically relevant for gemcitabine’s pharmacological activity. Cell viability studies in pancreatic cancer cells showed that carbamate functionalization of the 4-amino group of gemcitabine significantly reduced (>23-fold) the prodrugs’ cytotoxicity. The <i>N</i>-propargyloxycarbonyl (<i>N</i>-Poc) promoiety displayed the highest sensitivity to heterogeneous palladium catalysis under biocompatible conditions, with a reaction half-life of less than 6 h. Zebrafish studies with allyl, propargyl, and benzyl carbamate-protected rhodamines confirmed <i>N</i>-Poc as the most suitable masking group for implementing <i>in vivo</i> bioorthogonal organometallic chemistry

    Temporal Changes in trace metal concentrations during an artificial dust deposition to Large Mesocosms (DUNE-2 Experiment)

    No full text
    The deposition of atmospheric dust is one of the main external source to the ocean for elements abundant in crustal rocks. Once deposited the residence time of these elements in surface waters differs according to their chemical speciation and biological ultilization. In the present work we examined the temporal changes in the concentrations of Iron, Maganese and Aluminium within large mesocosms after the seeding with simulated aeolian dust of surface waters of the northwestern Mediterranean. Two artificial deposition events were performed during the course of this experiment: for each artificial Saharan dust fertilization to the mesocoms the changes in Mn, Fe and Al chemistry were followed over the following week. In this presentation, we will present results from this mesocosm experiment focusing on the similarities and differences between these 3 elements. This trace metal dataset makes a significant contribution to enhance our knowledge about the release of trace metals from Saharan dust in a low nutrient low chlorophyll area and the subsequent processes of biouptake and scavenging
    corecore