48 research outputs found

    Patient perspectives on the need for improved hearing rehabilitation: A qualitative survey study of German cochlear implant users

    Get PDF
    BackgroundThe electrical cochlear implant (eCI) partially restores hearing in individuals affected by profound hearing impairment (HI) or deafness. However, the limited resolution of sound frequency coding with eCIs limits hearing in daily situations such as group conversations. Current research promises future improvements in hearing restoration which may involve gene therapy and optical stimulation of the auditory nerve, using optogenetics. Prior to the potential clinical translation of these technologies, it is critical that patients are engaged in order to align future research agendas and technological advancements with their needs.MethodsHere, we performed a survey study with hearing impaired, using an eCI as a means of hearing rehabilitation. We distributed a questionnaire to 180 adult patients from the University Medical Center Göttingen’s Department of Otolaryngology who were actively using an eCI for 6 months or more during the time of the survey period. Questions revolved around patients needs, and willingness to accept hypothetical risks or drawbacks associated with an optical CI (oCI).ResultsEighty-one participants responded to the questionnaire; 68% were greater than 60 years of age and 26% had bilateral eCIs. Participants expressed a need for improving the performance beyond that experienced with their current eCI. Primarily, they desired improved speech comprehension in background noise, greater ability to appreciate music, and more natural sound impression. They expressed a willingness for engaging with new technologies for improved hearing restoration. Notably, participants were least concerned about hypothetically receiving a gene therapy necessary for the oCI implant; but expressed greater reluctance to hypothetically receiving an implant that had yet to be evaluated in a human clinical trial.ConclusionThis work provides a preliminary step in engaging patients in the development of a new technology that has the potential to address the limitations of electrical hearing rehabilitation

    A connexin30 mutation rescues hearing and reveals roles for gap junctions in cochlear amplification and micromechanics

    Get PDF
    Accelerated age-related hearing loss disrupts high-frequency hearing in inbred CD-1 mice. The p.Ala88Val (A88V) mutation in the gene coding for the gap-junction protein connexin30 (Cx30) protects the cochlear basal turn of adult CD-1Cx30A88V/A88V mice from degeneration and rescues hearing. Here we report that the passive compliance of the cochlear partition and active frequency tuning of the basilar membrane are enhanced in the cochleae of CD-1Cx30A88V/A88V compared to CBA/J mice with sensitive high-frequency hearing, suggesting that gap junctions contribute to passive cochlear mechanics and energy distribution in the active cochlea. Surprisingly, the endocochlear potential that drives mechanoelectrical transduction currents in outer hair cells and hence cochlear amplification is greatly reduced in CD-1Cx30A88V/A88V mice. Yet, the saturating amplitudes of cochlear microphonic potentials in CD-1Cx30A88V/A88V and CBA/J mice are comparable. Although not conclusive, these results are compatible with the proposal that transmembrane potentials, determined mainly by extracellular potentials, drive somatic electromotility of outer hair cells

    EF-hand protein Ca²⁺ buffers regulate Ca²⁺ influx and exocytosis in sensory hair cells

    Get PDF
    EF-hand Ca²⁺-binding proteins are thought to shape the spatiotemporal properties of cellular Ca²⁺ signaling and are prominently expressed in sensory hair cells in the ear. Here, we combined genetic disruption of parvalbumin-α, calbindin-D28k, and calretinin in mice with patch-clamp recording, in vivo physiology, and mathematical modeling to study their role in Ca²⁺ signaling, exocytosis, and sound encoding at the synapses of inner hair cells (IHCs). IHCs lacking all three proteins showed excessive exocytosis during prolonged depolarizations, despite enhanced Ca²⁺-dependent inactivation of their Ca²⁺ current. Exocytosis of readily releasable vesicles remained unchanged, in accordance with the estimated tight spatial coupling of Ca²⁺ channels and release sites (effective “coupling distance” of 17 nm). Substitution experiments with synthetic Ca²⁺ chelators indicated the presence of endogenous Ca²⁺ buffers equivalent to 1 mM synthetic Ca²⁺-binding sites, approximately half of them with kinetics as fast as 1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA). Synaptic sound encoding was largely unaltered, suggesting that excess exocytosis occurs extrasynaptically. We conclude that EF-hand Ca²⁺ buffers regulate presynaptic IHC function for metabolically efficient sound coding

    The Cl--channel TMEM16A is involved in the generation of cochlear Ca2+ waves and promotes the refinement of auditory brainstem networks in mice

    Get PDF
    Before hearing onset (postnatal day 12 in mice), inner hair cells (IHCs) spontaneously fire action potentials, thereby driving pre-sensory activity in the ascending auditory pathway. The rate of IHC action potential bursts is modulated by inner supporting cells (ISCs) of Kölliker’s organ through the activity of the Ca2+-activated Cl--channel TMEM16A (ANO1). Here, we show that conditional deletion of Ano1 (Tmem16a) in mice disrupts Ca2+ waves within Kölliker’s organ, reduces the burst-firing activity and the frequency selectivity of auditory brainstem neurons in the medial nucleus of the trapezoid body (MNTB), and also impairs the functional refinement of MNTB projections to the lateral superior olive. These results reveal the importance of the activity of Kölliker’s organ for the refinement of central auditory connectivity. In addition, our study suggests the involvement of TMEM16A in the propagation of Ca2+ waves, which may also apply to other tissues expressing TMEM16A

    βIVΣ1 spectrin stabilizes the nodes of Ranvier and axon initial segments

    Get PDF
    Saltatory electric conduction requires clustered voltage-gated sodium channels (VGSCs) at axon initial segments (AIS) and nodes of Ranvier (NR). A dense membrane undercoat is present at these sites, which is thought to be key for the focal accumulation of channels. Here, we prove that βIVΣ1 spectrin, the only βIV spectrin with an actin-binding domain, is an essential component of this coat. Specifically, βIVΣ1 coexists with βIVΣ6 at both AIS and NR, being the predominant spectrin at AIS. Removal of βIVΣ1 alone causes the disappearance of the nodal coat, an increased diameter of the NR, and the presence of dilations filled with organelles. Moreover, in myelinated cochlear afferent fibers, VGSC and ankyrin G clusters appear fragmented. These ultrastructural changes can explain the motor and auditory neuropathies present in βIVΣ1 −/− mice and point to the βIVΣ1 spectrin isoform as a master-stabilizing factor of AIS/NR membranes

    Unraveling haplotype errors in the DFNA33 locus

    Get PDF
    Genetic heterogeneity makes it difficult to identify the causal genes for hearing loss. Studies from previous decades have mapped numerous genetic loci, providing critical supporting evidence for gene discovery studies. Despite widespread sequencing accessibility, many historically mapped loci remain without a causal gene. The DFNA33 locus was mapped in 2009 and coincidentally contains ATP11A, a gene recently associated with autosomal dominant hearing loss and auditory neuropathy type 2. In a rare opportunity, we genome-sequenced a member of the original family to determine whether the DFNA33 locus may also be assigned to ATP11A. We identified a deep intronic variant in ATP11A that showed evidence of functionally normal splicing. Furthermore, we re-assessed haplotypes from the originally published DFNA33 family and identified two double recombination events and one triple recombination event in the pedigree, a highly unlikely occurrence, especially at this scale. This brief research report also serves as a call to the community to revisit families who have previously been involved in gene mapping studies, provide closure, and resolve these historical loci

    Mice do not require auditory input for the normal development of their ultrasonic vocalizations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transgenic mice have become an important tool to elucidate the genetic foundation of the human language faculty. While learning is an essential prerequisite for the acquisition of human speech, it is still a matter of debate whether auditory learning plays any role in the development of species-specific vocalizations in mice. To study the influence of auditory input on call development, we compared the occurrence and structure of ultrasonic vocalizations from deaf otoferlin-knockout mice, a model for human deafness DFNB9, to those of hearing wild-type and heterozygous littermates.</p> <p>Results</p> <p>We found that the occurrence and structure of ultrasonic vocalizations recorded from deaf otoferlin-knockout mice and hearing wild-type and heterozygous littermates do not differ. Isolation calls from 16 deaf and 15 hearing pups show the same ontogenetic development in terms of the usage and structure of their vocalizations as their hearing conspecifics. Similarly, adult courtship 'songs' produced by 12 deaf and 16 hearing males did not differ in the latency to call, rhythm of calling or acoustic structure.</p> <p>Conclusion</p> <p>The results indicate that auditory experience is not a prerequisite for the development of species-specific vocalizations in mice. Thus, mouse models are of only limited suitability to study the evolution of vocal learning, a crucial component in the development of human speech. Nevertheless, ultrasonic vocalizations of mice constitute a valuable readout in studies of the genetic foundations of social and communicative behavior.</p
    corecore