11 research outputs found

    Drivers and patterns of land biosphere carbon balance reversal

    Get PDF
    The carbon balance of the land biosphere is the result of complex interactions between land, atmosphere and oceans, including climatic change, carbon dioxide fertilization and land-use change. While the land biosphere currently absorbs carbon dioxide from the atmosphere, this carbon balance might be reversed under climate and land-use change (‘carbon balance reversal’). A carbon balance reversal would render climate mitigation much more difficult, as net negative emissions would be needed to even stabilize atmospheric carbon dioxide concentrations. We investigate the robustness of the land biosphere carbon sink under different socio-economic pathways by systematically varying climate sensitivity, spatial patterns of climate change and resulting land-use changes. For this, we employ a modelling framework designed to account for all relevant feedback mechanisms by coupling the integrated assessment model IMAGE with the process-based dynamic vegetation, hydrology and crop growth model LPJmL. We find that carbon balance reversal can occur under a broad range of forcings and is connected to changes in tree cover and soil carbon mainly in northern latitudes. These changes are largely a consequence of vegetation responses to varying climate and only partially of land-use change and the rate of climate change. Spatial patterns of climate change as deduced from different climate models, substantially determine how much pressure in terms of global warming and land-use change the land biosphere will tolerate before the carbon balance is reversed. A reversal of the land biosphere carbon balance can occur as early as 2030, although at very low probability, and should be considered in the design of so-called peak-and-decline strategies.Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347Peer Reviewe

    Quantifying the effectiveness of climate change mitigation through forest plantations and carbon sequestration with an integrated land-use model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carbon plantations are introduced in climate change policy as an option to slow the build-up of atmospheric carbon dioxide (CO<sub>2</sub>) concentrations. Here we present a methodology to evaluate the potential effectiveness of carbon plantations. The methodology explicitly considers future long-term land-use change around the world and all relevant carbon (C) fluxes, including all natural fluxes. Both issues have generally been ignored in earlier studies.</p> <p>Results</p> <p>Two different baseline scenarios up to 2100 indicate that uncertainties in future land-use change lead to a near 100% difference in estimates of carbon sequestration potentials. Moreover, social, economic and institutional barriers preventing carbon plantations in natural vegetation areas decrease the physical potential by 75–80% or more.</p> <p>Nevertheless, carbon plantations can still considerably contribute to slowing the increase in the atmospheric CO<sub>2 </sub>concentration but only in the long term. The most conservative set of assumptions lowers the increase of the atmospheric CO<sub>2 </sub>concentration in 2100 by a 27 ppm and compensates for 5–7% of the total energy-related CO<sub>2 </sub>emissions. The net sequestration up to 2020 is limited, given the short-term increased need for agricultural land in most regions and the long period needed to compensate for emissions through the establishment of the plantations. The potential is highest in the tropics, despite projections that most of the agricultural expansion will be in these regions. Plantations in high latitudes as Northern Europe and Northern Russia should only be established if the objective to sequester carbon is combined with other activities.</p> <p>Conclusion</p> <p>Carbon sequestration in plantations can play an important role in mitigating the build-up of atmospheric CO<sub>2</sub>. The actual magnitude depends on natural and management factors, social barriers, and the time frame considered. In addition, there are a number of ancillary benefits for local communities and the environment. Carbon plantations are, however, particularly effective in the long term. Furthermore, plantations do not offer the ultimate solution towards stabilizing CO<sub>2 </sub>concentrations but should be part of a broader package of options with clear energy emission reduction measures.</p

    Physical (top) and social (bottom) potential distribution of permanent carbon plantations in 2100 using the A1b scenario

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Quantifying the effectiveness of climate change mitigation through forest plantations and carbon sequestration with an integrated land-use model"</p><p>http://www.cbmjournal.com/content/3/1/3</p><p>Carbon Balance and Management 2008;3():3-3.</p><p>Published online 15 Apr 2008</p><p>PMCID:PMC2359746.</p><p></p

    Drivers and patterns of land biosphere carbon balance reversal

    Get PDF
    The carbon balance of the land biosphere is the result of complex interactions between land, atmosphere and oceans, including climatic change, carbon dioxide fertilization and land-use change. While the land biosphere currently absorbs carbon dioxide from the atmosphere, this carbon balance might be reversed under climate and land-use change ('carbon balance reversal'). A carbon balance reversal would render climate mitigation much more difficult, as net negative emissions would be needed to even stabilize atmospheric carbon dioxide concentrations. We investigate the robustness of the land biosphere carbon sink under different socio-economic pathways by systematically varying climate sensitivity, spatial patterns of climate change and resulting land-use changes. For this, we employ a modelling framework designed to account for all relevant feedback mechanisms by coupling the integrated assessment model IMAGE with the process-based dynamic vegetation, hydrology and crop growth model LPJmL. We find that carbon balance reversal can occur under a broad range of forcings and is connected to changes in tree cover and soil carbon mainly in northern latitudes. These changes are largely a consequence of vegetation responses to varying climate and only partially of land-use change and the rate of climate change. Spatial patterns of climate change as deduced from different climate models, substantially determine how much pressure in terms of global warming and land-use change the land biosphere will tolerate before the carbon balance is reversed. A reversal of the land biosphere carbon balance can occur as early as 2030, although at very low probability, and should be considered in the design of so-called peak-and-decline strategies

    Progress and barriers in understanding and preventing indirect land-use change

    No full text
    Climate change mitigation pathways have highlighted both the critical role of land-use emissions, and the potential use of biofuels as a low-emission energy carrier. This has led to concerns about the emission mitigation potential of biofuels, particularly related to indirect land-use change (ILUC). This arises when the production of biofuels displaces the production of land-based products elsewhere, either directly or via changes in crop prices, leading to indirect greenhouse gas (GHG) emissions. We review a large body of literature that has emerged on ILUC assessment and quantification, highlighting the methodologies employed, the resultant emission factors, modeled dynamics driving ILUC, and the uncertainty therein. Our review reveals that improvements in ILUC assessment methods have failed to reduce uncertainty and increase confidence in ILUC factors, instead making marginal improvements to economic models. Thus, while assessments have highlighted measures that could reduce ILUC, it is impossible to control or determine the actual ILUC resulting from biofuel production. This makes ILUC a poor guiding principle for land-use and climate policy, and does not help with the determination of the GHG performance of biofuels. Instead climate and land-use policy should focus on more integrated protection of terrestrial resources, covering all land-use-related products

    Progress and barriers in understanding and preventing indirect land-use change

    Get PDF
    Climate change mitigation pathways have highlighted both the critical role of land-use emissions, and the potential use of biofuels as a low-emission energy carrier. This has led to concerns about the emission mitigation potential of biofuels, particularly related to indirect land-use change (ILUC). This arises when the production of biofuels displaces the production of land-based products elsewhere, either directly or via changes in crop prices, leading to indirect greenhouse gas (GHG) emissions. We review a large body of literature that has emerged on ILUC assessment and quantification, highlighting the methodologies employed, the resultant emission factors, modeled dynamics driving ILUC, and the uncertainty therein. Our review reveals that improvements in ILUC assessment methods have failed to reduce uncertainty and increase confidence in ILUC factors, instead making marginal improvements to economic models. Thus, while assessments have highlighted measures that could reduce ILUC, it is impossible to control or determine the actual ILUC resulting from biofuel production. This makes ILUC a poor guiding principle for land-use and climate policy, and does not help with the determination of the GHG performance of biofuels. Instead climate and land-use policy should focus on more integrated protection of terrestrial resources, covering all land-use-related products

    A comprehensive view on climate change: Coupling of earth system and integrated assessment models

    No full text
    There are several reasons to strengthen the cooperation between the integrated assessment (IA) and earth system (ES) modeling teams in order to better understand the joint development of environmental and human systems. This cooperation can take many different forms, ranging from information exchange between research communities to fully coupled modeling approaches. Here, we discuss the strengths and weaknesses of different approaches and try to establish some guidelines for their applicability, based mainly on the type of interaction between the model components (including the role of feedback), possibilities for simplification and the importance of uncertainty. We also discuss several important areas of joint IAES research, such as land use/land cover dynamics and the interaction between climate change and air pollution, and indicate the type of collaboration that seems to be most appropriate in each case. We find that full coupling of IAES models might not always be the most desirable form of cooperation, since in some cases the direct feedbacks between IA and ES may be too weak or subject to considerable process or scenario uncertainty. However, when local processes are important, it could be important to consider full integration. By encouraging cooperation between the IA and ES communities in the future more consistent insights can be developed
    corecore