649 research outputs found

    Effect of thermal expansion on the linear stability of planar premixed flames for a simple chain-branching model: The high activation energy asymptotic limit

    Get PDF
    The linear stability of freely propagating, adiabatic, planar premixed ames is investigated in the context of a simple chain-branching chemistry model consisting of a chain-branching reaction step and a completion reaction step. The role of chain-branching is governed by a crossover temperature. Hydrodynamic effects, induced by thermal expansion, are taken into account and the results compared and contrasted with those from a previous purely thermal-di�usive constant density linear stability study. It is shown that when thermal expansion is properly accounted for, a region of stable ames predicted by the constant density model disappears, and instead the ame is unstable to a long-wavelength cellular instability. For a pulsating mode, however, thermal expansion is shown to have only a weak e�ect on the critical fuel Lewis number required for instability. These e�ects of thermal expansion on the two-step chain-branching ame are shown to be qualitatively similar to those on the standard one-step reaction model. Indeed, as found by constant density studies, in the limit that the chain-branching crossover temperature tends to the adiabatic ame temperature, the two-step model can be described to leading order by the one-step model with a suitably de�ned e�ective activation energy

    An experimental study of reactive turbulent mixing

    Get PDF
    An experimental study of two coaxial gas streams, which react very rapidly, was performed to investigate the mixing characteristics of turbulent flow fields. The center stream consisted of a CO-N2 mixture and the outer annular stream consisted of air vitiated by H2 combustion. The streams were at equal velocity (50 m/sec) and temperature (1280 K). Turbulence measurements were obtained using hot film anemometry. A sampling probe was used to obtain time averaged gas compositions. Six different turbulence generators were placed in the annular passage to alter the flow field mixing characteristics. The turbulence generators affected the bulk mixing of the streams and the extent of CO conversion to different degrees. The effects can be related to the average eddy size (integral scale) and the bulk mixing. Higher extents of conversion of CO to CO2 were found be increasing the bulk mixing and decreasing the average eddy size

    Evidence for a Second Order Phase Transition in Glasses at Very Low Temperatures -- A Macroscopic Quantum State of Tunneling Systems

    Full text link
    Dielectric measurements at very low temperature indicate that in a glass with the eutectic composition BaO-Al2_2O3_3-SiO2_2 a phase transition occurs at 5.84 mK. Below that temperature small magnetic fields of the order of 10 μ\muT cause noticeable changes of the dielectric constant although the glass is insensitive to fields up to 20 T above 10 mK. The experimental findings may be interpreted as the signature of the formation of a new phase in which many tunneling systems perform a coherent motion resulting in a macroscopic wave function.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    Addressing social and emotional learning: Fostering resilience and academic self-efficacy in educationally disadvantaged learners transitioning to university

    Get PDF
    In recent years, the impact of mental health issues on university students’ ability to successfully access, transition and participate in university has gained increasing attention. Mental wellbeing is of particular concern in pre-university enabling programs which often specifically target educationally-disadvantaged equity groups. It has become increasingly clear that in addition to ‘academic skills’, these students also need to be equipped with social and emotional skills that support their transition to university, as well as promote resilience, sustained motivation and academic self- efficacy. In response to this, we reviewed and revised the curricula of two of Murdoch University’s key enabling programs to incorporate material which focused on developing these skills. This paper presents our rationale and examples of our diverse approaches to addressing social and emotional learning in curricula which aims to support and enable the transition of educationally disadvantaged students into undergraduate studies

    Magnetic Field Dependent Tunneling in Glasses

    Full text link
    We report on experiments giving evidence for quantum effects of electromagnetic flux in barium alumosilicate glass. In contrast to expectation, below 100 mK the dielectric response becomes sensitive to magnetic fields. The experimental findings include both, the complete lifting of the dielectric saturation by weak magnetic fields and oscillations of the dielectric response in the low temperature resonant regime. As origin of these effects we suggest that the magnetic induction field violates the time reversal invariance leading to a flux periodicity in the energy levels of tunneling systems. At low temperatures, this effect is strongly enhanced by the interaction between tunneling systems and thus becomes measurable.Comment: 4 pages, 4 figure

    Low temperature acoustic properties of amorphous silica and the Tunneling Model

    Full text link
    Internal friction and speed of sound of a-SiO(2) was measured above 6 mK using a torsional oscillator at 90 kHz, controlling for thermal decoupling, non-linear effects, and clamping losses. Strain amplitudes e(A) = 10^{-8} mark the transition between the linear and non-linear regime. In the linear regime, excellent agreement with the Tunneling Model was observed for both the internal friction and speed of sound, with a cut-off energy of E(min) = 6.6 mK. In the non-linear regime, two different behaviors were observed. Above 10 mK the behavior was typical for non-linear harmonic oscillators, while below 10 mK a different behavior was found. Its origin is not understood.Comment: 1 tex file, 6 figure

    Nonlinear cellular instabilities of planar premixed flames: numerical simulations of the Reactive Navier-Stokes equations

    Get PDF
    Two-dimensional compressible Reactive Navier-Stokes numerical simulations of intrinsic planar, premixed flame instabilities are performed. The initial growth of a sinusoidally perturbed planar flame is first compared with the predictions of a recent exact linear stability analysis, and it is shown the analysis provides a necessary but not sufficient test problem for validating numerical schemes intended for flame simulations. The long-time nonlinear evolution up to the final nonlinear stationary cellular flame is then examined for numerical domains of increasing width. It is shown that for routinely computationally affordable domain widths, the evolution and final state is, in general, entirely dependent on the width of the domain and choice of numerical boundary conditions. It is also shown that the linear analysis has no relevance to the final nonlinear cell size. When both hydrodynamic and thermal-diffusive effects are important, the evolution consists of a number of symmetry breaking cell splitting and re-merging processes which results in a stationary state of a single very asymmetric cell in the domain, a flame shape which is not predicted by weakly nonlinear evolution equations. Resolution studies are performed and it is found that lower numerical resolutions, typical of those used in previous works, do not give even the qualitatively correct solution in wide domains. We also show that the long-time evolution, including whether or not a stationary state is ever achieved, depends on the choice of the numerical boundary conditions at the inflow and outflow boundaries, and on the numerical domain length and flame Mach number for the types of boundary conditions used in some previous works

    The influence of long- and short-term volcanic strain on aquifer pressure:a case study from Soufrière Hills Volcano, Montserrat (W.I.)

    Get PDF
    Aquifers are poroelastic bodies that respond to strain by changes in pore pressure. Crustal deformation due to volcanic processes induces pore pressure variations that are mirrored in well water levels. Here, we investigate water level changes in the Belham valley on Montserrat over the course of two years (2004-2006). Using finite element analysis, we simulate crustal deformation due to different volcanic strain sources and the dynamic poroelastic aquifer response. While some additional hydrological drivers cannot be excluded, we suggest that a poroelastic strain response of the aquifer system in the Belham valley is a possible explanation for the observed water level changes. According to our simulations, the shallow Belham aquifer responds to a steadily increasing sediment load due to repeated lahar sedimentation in the valley with rising aquifer pressures. A wholesale dome collapse in May 2006 on the other hand induced dilatational strain and thereby a short-term water level drop in a deeper-seated aquifer, which caused groundwater leakage from the Belham aquifer and thereby induced a delayed water level fall in the wells. The system thus responded to both gradual and rapid transient strain associated with the eruption of Soufrière Hills Volcano (Montserrat). This case study gives field evidence for theoretical predictions on volcanic drivers behind hydrological transients, demonstrating the potential of hydrological data for volcano monitoring. Interrogation of such data can provide valuable constraints on stress evolution in volcanic systems and therefore complement other monitoring systems. The presented models and inferred results are conceptually applicable to volcanic areas worldwide
    • …
    corecore