546 research outputs found

    Climatic effects of 1950-2050 changes in US anthropogenic aerosols - Part 2: Climate response

    Get PDF
    We investigate the climate response to changing US anthropogenic aerosol sources over the 1950–2050 period by using the NASA GISS general circulation model (GCM) and comparing to observed US temperature trends. Time-dependent aerosol distributions are generated from the GEOS-Chem chemical transport model applied to historical emission inventories and future projections. Radiative forcing from US anthropogenic aerosols peaked in 1970–1990 and has strongly declined since due to air quality regulations. We find that the regional radiative forcing from US anthropogenic aerosols elicits a strong regional climate response, cooling the central and eastern US by 0.5–1.0 °C on average during 1970–1990, with the strongest effects on maximum daytime temperatures in summer and autumn. Aerosol cooling reflects comparable contributions from direct and indirect (cloud-mediated) radiative effects. Absorbing aerosol (mainly black carbon) has negligible warming effect. Aerosol cooling reduces surface evaporation and thus decreases precipitation along the US east coast, but also increases the southerly flow of moisture from the Gulf of Mexico resulting in increased cloud cover and precipitation in the central US. Observations over the eastern US show a lack of warming in 1960–1980 followed by very rapid warming since, which we reproduce in the GCM and attribute to trends in US anthropogenic aerosol sources. Present US aerosol concentrations are sufficiently low that future air quality improvements are projected to cause little further warming in the US (0.1 °C over 2010–2050). We find that most of the warming from aerosol source controls in the US has already been realized over the 1980–2010 period

    Improved quantification of Chinese carbon fluxes using CO2/CO correlations in Asian outflow

    Get PDF
    [1] We use observed CO2:CO correlations in Asian outflow from the TRACE-P aircraft campaign (February–April 2001), together with a three-dimensional global chemical transport model (GEOS-CHEM), to constrain specific components of the east Asian CO2 budget including, in particular, Chinese emissions. The CO2/CO emission ratio varies with the source of CO2 (different combustion types versus the terrestrial biosphere) and provides a characteristic signature of source regions and source type. Observed CO2/CO correlation slopes in east Asian boundary layer outflow display distinct regional signatures ranging from 10–20 mol/mol (outflow from northeast China) to 80 mol/mol (over Japan). Model simulations using best a priori estimates of regional CO2 and CO sources from Streets et al. [2003] (anthropogenic), the CASA model (biospheric), and Duncan et al. [2003] (biomass burning) overestimate CO2 concentrations and CO2/CO slopes in the boundary layer outflow. Constraints from the CO2/CO slopes indicate that this must arise from an overestimate of the modeled regional net biospheric CO2 flux. Our corrected best estimate of the net biospheric source of CO2 from China for March–April 2001 is 3200 Gg C/d, which represents a 45 % reduction of the net flux from the CASA model. Previous analyses of the TRACE-P data had found that anthropogenic Chinese C

    Isospin-mixing corrections for fp-shell Fermi transitions

    Get PDF
    Isospin-mixing corrections for superallowed Fermi transitions in {\it fp}-shell nuclei are computed within the framework of the shell model. The study includes three nuclei that are part of the set of nine accurately measured transitions as well as five cases that are expected to be measured in the future at radioactive-beam facilities. We also include some new calculations for 10^{10}C. With the isospin-mixing corrections applied to the nine accurately measured ftft values, the conserved-vector-current hypothesis and the unitarity condition of the Cabbibo-Kobayashi-Maskawa (CKM) matrix are tested.Comment: 13 pages plus five tables. revtex macro

    Search for muonic decays of the antiproton at the Fermilab Antiproton Accumulator

    Get PDF
    A search for antiproton decay has been made at the Fermilab Antiproton Accumulator. Limits are placed on six antiproton decay modes which contain a final-state muon. At the 90% C.L. we find that tau/B(mu gamma) > 5.0 x 10^4 yr, tau/B(mu pi0) > 4.8 x 10^4 yr, tau/B(mu eta) > 7.9 x 10^3 yr, tau/B(mu gamma gamma) > 2.3 x 10^4 yr, tau/B(mu K0S > 4.3 x 10^3 yr, and tau/B(mu K0L) > 6.5 x 10^3 yr.Comment: 8 pages + 3 Postscript figure
    • …
    corecore