2,080 research outputs found

    Separating true range measurements from multi-path and scattering interference in commercial range cameras

    Get PDF
    Time-of-flight range cameras acquire a three-dimensional image of a scene simultaneously for all pixels from a single viewing location. Attempts to use range cameras for metrology applications have been hampered by the multi-path problem, which causes range distortions when stray light interferes with the range measurement in a given pixel. Correcting multi-path distortions by post-processing the three-dimensional measurement data has been investigated, but enjoys limited success because the interference is highly scene dependent. An alternative approach based on separating the strongest and weaker sources of light returned to each pixel, prior to range decoding, is more successful, but has only been demonstrated on custom built range cameras, and has not been suitable for general metrology applications. In this paper we demonstrate an algorithm applied to both the Mesa Imaging SR-4000 and Canesta Inc. XZ-422 Demonstrator unmodified off-the-shelf range cameras. Additional raw images are acquired and processed using an optimization approach, rather than relying on the processing provided by the manufacturer, to determine the individual component returns in each pixel. Substantial improvements in accuracy are observed, especially in the darker regions of the scene

    Useful applications of earth-oriented satellites - Systems for remote-sensing information and distribution, panel 8

    Get PDF
    Problems and potential use of data gathered by remote sensing from satellites or aircraf

    Discovering Valuable Items from Massive Data

    Full text link
    Suppose there is a large collection of items, each with an associated cost and an inherent utility that is revealed only once we commit to selecting it. Given a budget on the cumulative cost of the selected items, how can we pick a subset of maximal value? This task generalizes several important problems such as multi-arm bandits, active search and the knapsack problem. We present an algorithm, GP-Select, which utilizes prior knowledge about similarity be- tween items, expressed as a kernel function. GP-Select uses Gaussian process prediction to balance exploration (estimating the unknown value of items) and exploitation (selecting items of high value). We extend GP-Select to be able to discover sets that simultaneously have high utility and are diverse. Our preference for diversity can be specified as an arbitrary monotone submodular function that quantifies the diminishing returns obtained when selecting similar items. Furthermore, we exploit the structure of the model updates to achieve an order of magnitude (up to 40X) speedup in our experiments without resorting to approximations. We provide strong guarantees on the performance of GP-Select and apply it to three real-world case studies of industrial relevance: (1) Refreshing a repository of prices in a Global Distribution System for the travel industry, (2) Identifying diverse, binding-affine peptides in a vaccine de- sign task and (3) Maximizing clicks in a web-scale recommender system by recommending items to users

    Structural analysis of DNA binding by C.Csp231I, a member of a novel class of R-M controller proteins regulating gene expression

    Get PDF
    In a wide variety of bacterial restriction–modification systems, a regulatory `controller' protein (or C-protein) is required for effective transcription of its own gene and for transcription of the endonuclease gene found on the same operon. We have recently turned our attention to a new class of controller proteins (exemplified by C.Csp231I) that have quite novel features, including a much larger DNA-binding site with an 18 bp (∼60 Å) spacer between the two palindromic DNA-binding sequences and a very different recognition sequence from the canonical GACT/AGTC. Using X-ray crystallography, the structure of the protein in complex with its 21 bp DNA-recognition sequence was solved to 1.8 Å resolution, and the molecular basis of sequence recognition in this class of proteins was elucidated. An unusual aspect of the promoter sequence is the extended spacer between the dimer binding sites, suggesting a novel interaction between the two C-protein dimers when bound to both recognition sites correctly spaced on the DNA. A U-bend model is proposed for this tetrameric complex, based on the results of gel-mobility assays, hydrodynamic analysis and the observation of key contacts at the interface between dimers in the crystal.</jats:p

    Pilot, Rollout and Monte Carlo Tree Search Methods for Job Shop Scheduling

    Get PDF
    Greedy heuristics may be attuned by looking ahead for each possible choice, in an approach called the rollout or Pilot method. These methods may be seen as meta-heuristics that can enhance (any) heuristic solution, by repetitively modifying a master solution: similarly to what is done in game tree search, better choices are identified using lookahead, based on solutions obtained by repeatedly using a greedy heuristic. This paper first illustrates how the Pilot method improves upon some simple well known dispatch heuristics for the job-shop scheduling problem. The Pilot method is then shown to be a special case of the more recent Monte Carlo Tree Search (MCTS) methods: Unlike the Pilot method, MCTS methods use random completion of partial solutions to identify promising branches of the tree. The Pilot method and a simple version of MCTS, using the ε\varepsilon-greedy exploration paradigms, are then compared within the same framework, consisting of 300 scheduling problems of varying sizes with fixed-budget of rollouts. Results demonstrate that MCTS reaches better or same results as the Pilot methods in this context.Comment: Learning and Intelligent OptimizatioN (LION'6) 7219 (2012

    Bright X-ray radiation from plasma bubbles in an evolving laser wakefield accelerator

    Get PDF
    We show that the properties of the electron beam and bright x-rays produced by a laser wakefield accelerator can be predicted if the distance over which the laser self-focuses and compresses prior to self-injection is taken into account. A model based on oscillations of the beam inside a plasma bubble shows that performance is optimised when the plasma length is matched to the laser depletion length. With a 200~TW laser pulse this results in an x-ray beam with median photon energy of \unit[20]{keV}, >6×108> 6\times 10^{8} photons above \unit[1]{keV} per shot and a peak brightness of \unit[3 \times 10^{22}]{photons~s^{-1}mrad^{-2}mm^{-2} (0.1\% BW)^{-1}}.Comment: 5 pages, 4 figure

    Oblique Confinement and Phase Transitions in Chern-Simons Gauge Theories

    Full text link
    We investigate non-perturbative features of a planar Chern-Simons gauge theory modeling the long distance physics of quantum Hall systems, including a finite gap M for excitations. By formulating the model on a lattice, we identify the relevant topological configurations and their interactions. For M bigger than a critical value, the model exhibits an oblique confinement phase, which we identify with Lauglin's incompressible quantum fluid. For M smaller than the critical value, we obtain a phase transition to a Coulomb phase or a confinement phase, depending on the value of the electromagnetic coupling.Comment: 8 pages, harvmac, DFUPG 91/94 and MPI-PhT/94-9

    Modified Thomson spectrometer design for high energy, multi-species ion sources

    Get PDF
    A modification to the standard Thomson parabola spectrometer is discussed, which is designed to measure high energy (tens of MeV/nucleon), broad bandwidth spectra of multi-species ions accelerated by intense laser plasma interactions. It is proposed to implement a pair of extended, trapezoidal shaped electric plates, which will not only resolve ion traces at high energies, but will also retain the lower energy part of the spectrum. While a longer (along the axis of the undeflected ion beam direction) electric plate design provides effective charge state separation at the high energy end of the spectrum, the proposed new trapezoidal shape will enable the low energy ions to reach the detector, which would have been clipped or blocked by simply extending the rectangular plates to enhance the electrostatic deflection
    corecore