4,747 research outputs found

    New physics searches in flavour physics

    Get PDF
    The origin of flavour and CP violation is among the most important open questions in particle physics. Imminent results from the LHC as well as planned dedicated flavour physics experiments might help to shed light on this puzzle. This talk concentrates on the NP sensitivity of the rare B decays Bs,d → μ+μ− and B → K∗μ−μ− and of the CP-violating phase in Bs mixing. A brief summary of a supersymmetric model with interesting signatures in the flavour sector is presented

    Biological synthesis of fluorescent nanoparticles by cadmium and tellurite resistant Antarctic bacteria: exploring novel natural nanofactories

    Get PDF
    Indexación: Web of ScienceBackground: Fluorescent nanoparticles or quantum dots (QDs) have been intensely studied for basic and applied research due to their unique size-dependent properties. There is an increasing interest in developing ecofriendly methods to synthesize these nanoparticles since they improve biocompatibility and avoid the generation of toxic byproducts. The use of biological systems, particularly prokaryotes, has emerged as a promising alternative. Recent studies indicate that QDs biosynthesis is related to factors such as cellular redox status and antioxidant defenses. Based on this, the mixture of extreme conditions of Antarctica would allow the development of natural QDs producing bacteria. Results: In this study we isolated and characterized cadmium and tellurite resistant Antarctic bacteria capable of synthesizing CdS and CdTe QDs when exposed to these oxidizing heavy metals. A time dependent change in fluorescence emission color, moving from green to red, was determined on bacterial cells exposed to metals. Biosynthesis was observed in cells grown at different temperatures and high metal concentrations. Electron microscopy analysis of treated cells revealed nanometric electron-dense elements and structures resembling membrane vesicles mostly associated to periplasmic space. Purified biosynthesized QDs displayed broad absorption and emission spectra characteristic of biogenic Cd nanoparticles. Conclusions: Our work presents a novel and simple biological approach to produce QDs at room temperature by using heavy metal resistant Antarctic bacteria, highlighting the unique properties of these microorganisms as potent natural producers of nano-scale materials and promising candidates for bioremediation purposes.http://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-016-0477-

    Protectionist Responses to the Crisis: Global Trends and Implications

    Get PDF
    In this paper we take a systematic look at recent trends in global protectionism and at the potential implications of a protectionist backlash for economic growth, using results from the recent economic literature and new model simulations. We find that there has so far been a moderate increase in actual protectionist measures to restrict trade through tariff and non-tariff barriers. At the same time, evidence from surveys shows that public pressure for more economic protection has been mounting since the mid-2000s, and has possibly intensified since the start of the financial crisis. However, no World Trade Organization (WTO) member has retreated into widespread trade restrictions or protectionism to date. Our model-based simulations suggest that the impairment of the global flow of trade would hamper the recovery from the crisis, as well as the long-term growth of the global economy. At the same time, it is unlikely that protectionism would help to correct existing current account imbalances. Moreover, the countries implementing protectionist measures should expect a deterioration of their international competitiveness, which would further affect the potential for longer-term real GDP growth.Protectionism ; trade ; financial crisis ; competitiveness ; World Trade Organization ; global imbalances.

    Microgasification cookstoves and pellet fuels from waste biomass: A cost and performance comparison with charcoal and natural gas in Tanzania

    Get PDF
    Cooking with wood and wood charcoal is done by over 90% of Africa’s population; it has two major challenges: deforestation and indoor air pollution from cooking smoke, the latter being the top risk factor for disease in Tanzania. Microgasification stoves (top lit up draft [TLUD]) that burn pellets produced from agricultural waste have potential to address both of these issues. We examined the relative efficiency and cost of the major urban cooking fuels - charcoal and liquefied natural gas (LNG) – and compared them to cooking with waste biomass-based pellet fuels; we also compared the performance of three models of natural draft (ND) TLUD stove (Troika, Jiko Bomba, St. John’s) and one forced air (fan) stove (Philips). The Philips and averaged ND stoves used 83 and 133% more pellets by weight respectively to cook beans than charcoal, costing 47 and 93% more at 2013 charcoal and pellet prices. Cooking with LNG costs 387 to 647% more than cooking with charcoal, depending on gas flow rate. The high cost of LNG and LNG stoves will be barriers to the great majority of Tanzanians to move to this improved cookstove technologies (ICTs). Biochar production averaged 59 and 29% of total fuel in the ND and Philips, respectively. Interviews of 30 ND TLUD stove users showed that 60% abandoned use within one month, 80% stating that they produce too much smoke and 40% stating that controlling the air vent is too much trouble. Seventy five percent said that the TLUD cooks significantly faster than charcoal. Due to the continued 33-99% annual increase in charcoal prices in Tanzania, work on introducing TLUD stoves is justified. Key words: Microgasification stoves, TLUD, improved cooking technologies, deforestation, pellet fuels

    Assessing the Utility of Early Warning Systems for Detecting Failures in Major Wind Turbine Components

    Get PDF
    This paper provides enhancements to normal behaviour models for monitoring major wind turbine components and a methodology to assess the monitoring system reliability based on SCADA data and decision analysis. Typically, these monitoring systems are based on fully data-driven regression of damage sensitive-parameters. Firstly, the problem of selecting suitable inputs for building a temperature model of operating main bearings is addressed, based on a sensitivity study. This shows that the dimensionality of the dataset can be greatly reduced while reaching sufficient prediction accuracy. Subsequently, performance quantities are derived from a statistical description of the prediction error and used as input to a decision analysis. Two distinct intervention policies, replacement and repair, are compared in terms of expected utility. The aim of this study is to provide a method to quantify the benefit of implementing the online system from an economic risk perspective. Under the realistic hypotheses made, the numerical example shows for instance that replacement is not convenient compared to repair

    The Effect of Download Time on Consumer Attitude Toward the Retailer in eCommerce

    Get PDF
    Download time has been recognized as one of the most important technological impediments to electronic commerce (EC). Unfortunately, the exact consequences of this impediment are currently ill-defined. The goal of this study is to extend the work of Rose and Straub (1999) to identify how this technology impacts the success or failure of EC initiatives. Using marketing and systems response time theories, three hypotheses are proposed. First, that download time in a retailer\u27s Web application has a negative impact on consumer attitude toward that Web retailer. Second, that those effects increase in intensity as consumers attribute more of the cause for delay to the Web application. And third, that attitudes formed about a retailer predict consumer patronage intentions. A laboratory experiment is being undertaken to test these hypotheses

    Time-dependent perturbation theory for vibrational energy relaxation and dephasing in peptides and proteins

    Full text link
    Without invoking the Markov approximation, we derive formulas for vibrational energy relaxation (VER) and dephasing for an anharmonic system oscillator using a time-dependent perturbation theory. The system-bath Hamiltonian contains more than the third order coupling terms since we take a normal mode picture as a zeroth order approximation. When we invoke the Markov approximation, our theory reduces to the Maradudin-Fein formula which is used to describe VER properties of glass and proteins. When the system anharmonicity and the renormalization effect due to the environment vanishes, our formulas reduce to those derived by Mikami and Okazaki invoking the path-integral influence functional method [J. Chem. Phys. 121 (2004) 10052]. We apply our formulas to VER of the amide I mode of a small amino-acide like molecule, N-methylacetamide, in heavy water.Comment: 16 pages, 5 figures, 5 tables, submitted to J. Chem. Phy

    Revertant fibres and dystrophin traces in Duchenne muscular dystrophy: Implication for clinical trials

    Get PDF
    Duchenne muscular dystrophy (DMD) is characterised by the absence of dystrophin in muscle biopsies, although residual dystrophin can be present, either as dystrophin-positive (revertant) fibres or traces. As restoration of dystrophin expression is the end point of clinical trials, such residual dystrophin is a key factor in recruitment of patients and may also confound the analysis of dystrophin restoration in treated patients, if, as previously observed in the mdx mouse, revertant fibres increase with age. In 62% of the diagnostic biopsies reports of 65 DMD patients studied, traces or revertants were recorded with no correlation between traces or revertants, the patients' performance, or corticosteroids response. In nine of these patients, there was no increase in traces or revertants in biopsies taken a mean of 8.23 years (5.8-10.4 years) after the original diagnostic biopsy. This information should help in the design and execution of clinical trials focused on dystrophin restoration strategies. (C) 2010 Elsevier B.V. All rights reserved

    Lifetimes of image-potential states on copper surfaces

    Full text link
    The lifetime of image states, which represent a key quantity to probe the coupling of surface electronic states with the solid substrate, have been recently determined for quantum numbers n≤6n\le 6 on Cu(100) by using time-resolved two-photon photoemission in combination with the coherent excitation of several states (U. H\"ofer et al, Science 277, 1480 (1997)). We here report theoretical investigations of the lifetime of image states on copper surfaces. We evaluate the lifetimes from the knowledge of the self-energy of the excited quasiparticle, which we compute within the GW approximation of many-body theory. Single-particle wave functions are obtained by solving the Schr\"odinger equation with a realistic one-dimensional model potential, and the screened interaction is evaluated in the random-phase approximation (RPA). Our results are in good agreement with the experimentally determined decay times.Comment: 4 pages, 1 figure, to appear in Phys. Rev. Let
    • …
    corecore