109 research outputs found

    A human colonic crypt culture system to study regulation of stem cell-driven tissue renewal and physiological function

    Get PDF
    The intestinal epithelium is one of the most rapidly renewing tissues in the human body and fulfils vital physiological roles such as barrier function and transport of nutrients and fluid. Investigation of gut epithelial physiology in health and disease has been hampered by the lack of ex vivo models of the native human intestinal epithelium. Recently, remarkable progress has been made in defining intestinal stem cells and in generating intestinal organoid cultures. In parallel, we have developed a 3D culture system of the native human colonic epithelium that recapitulates the topological hierarchy of stem cell-driven tissue renewal and permits the physiological study of native polarized epithelial cells. Here we describe methods to establish 3D cultures of intact human colonic crypts and conduct real-time imaging of intestinal tissue renewal, cellular signalling, and physiological function, in conjunction with manipulation of gene expression by lentiviral or adenoviral transduction. Visualization of mRNA- and protein-expression patterns in cultured human colonic crypts, and cross-validation with crypts derived from fixed mucosal biopsies, is also described. Alongside studies using intestinal organoids, the near-native human colonic crypt culture model will help to bridge the gap that exists between investigation of colon cancer cell lines and/or animal (tissue) studies, and progression to clinical trials. To this end, the near native human colonic crypt model provides a platform to aid the development of novel strategies for the prevention of inflammatory bowel disease and cancer

    Whose knowledge, whose voices? Power, agency and resistance in disability studies for the global south

    Get PDF
    Meekosha (2011) maintains that research and theories about disability derive mainly from the global North. Disability Studies rarely include non-metropolitan thinkers. Even when they do, these studies tend to be seen as context specific, and the social theories which emanate from these studies are rarely refered to in research theorizing disability in the North. This chapter sets out to investigate how this one way transfer of knowledge affects the way Disability Studies is conceptualised - whose experiences are incorporated within these studies; and whose are left out. Multilateral debate and dialogue between Disability Studies academics and activists in different locations around the world would help add on to the knowledge already available in the field, while keeping others informed about what is taking place in 'similar' situations elsewhere.peer-reviewe

    Assimilation of phytate-phosphorus by the extracellular phytase activity of tobacco (Nicotiana tabacum) is affected by the availability of soluble phytate

    Get PDF
    Phytate, the major organic phosphorus in soil, is not readily available to plants as a source of phosphorus (P). It is either complexed with cations or adsorbed to various soil components. The present study was carried out to investigate the extracellular phytase activities of tobacco (Nicotiana tabacum variety GeXin No.1) and its ability to assimilate external phytate-P. Whereas phytase activities in roots, shoots and growth media of P i-fed 14-day-old seedlings were only 1.3-4.9% of total acid phosphatase (APase) activities, P starvation triggered an increase in phytase secretion up to 914.9 mU mg -1 protein, equivalent to 18.2% of total APase activities. Much of the extracellular phytase activities were found to be root-associated than root-released. The plants were not able to utilize phytate adsorbed to sand, except when insoluble phytate salts were preformed with Mg 2+ and Ca 2+ ions for supplementation. Tobacco grew better in sand supplemented with Mg-phytate salts (31.9 mg dry weight plant -1; 0.68% w/w P concentration) than that with Ca-phytate salts (9.5 mg plant -1; 0.42%), presumably due to its higher solubility. We conclude that insolubility of soil phytate is the major constrain for its assimilation. Improving solubility of soil phytate, for example, by enhancement of citrate secretion, may be a feasible approach to improve soil phytate assimilation. © Springer 2006.postprin

    Proliferation Index: A Continuous Model to Predict Prognosis in Patients with Tumours of the Ewing's Sarcoma Family

    Get PDF
    The prognostic value of proliferation index (PI) and apoptotic index (AI), caspase-8, -9 and -10 expression have been investigated in primary Ewing's sarcoma family of tumours (ESFT). Proliferating cells, detected by immunohistochemistry for Ki-67, were identified in 91% (91/100) of tumours with a median PI of 14 (range 0–87). Apoptotic cells, identified using the TUNEL assay, were detected in 96% (76/79) of ESFT; the median AI was 3 (range 0–33). Caspase-8 protein expression was negative (0) in 14% (11/79), low (1) in 33% (26/79), medium (2) in 38% (30/79) and high (3) in 15% (12/79) of tumours, caspase-9 expression was low (1) in 66% (39/59) and high (3) in 34% (20/59), and caspase-10 protein was low (1) in 37% (23/62) and negative (0) in 63% (39/62) of primary ESFT. There was no apparent relationship between caspase-8, -9 and -10 expression, PI and AI. PI was predictive of relapse-free survival (RFS; p = 0.011) and overall survival (OS; p = <0.001) in a continuous model, whereas AI did not predict outcome. Patients with tumours expressing low levels of caspase-9 protein had a trend towards a worse RFS than patients with tumours expressing higher levels of caspase-9 protein (p = 0.054, log rank test), although expression of caspases-8, -9 and/or -10 did not significantly predict RFS or OS. In a multivariate analysis model that included tumour site, tumour volume, the presence of metastatic disease at diagnosis, PI and AI, PI independently predicts OS (p = 0.003). Consistent with previous publications, patients with pelvic tumours had a significantly worse OS than patients with tumours at other sites (p = 0.028); patients with a pelvic tumour and a PI≥20 had a 6 fold-increased risk of death. These studies advocate the evaluation of PI in a risk model of outcome for patients with ESFT

    Caspase Inhibition Blocks Cell Death and Enhances Mitophagy but Fails to Promote T-Cell Lymphoma

    Get PDF
    Caspase-9 is a component of the apoptosome that mediates cell death following release of cytochrome c from mitochondria. Inhibition of Caspase-9 with a dominant negative construct (Casp9DN) blocks apoptosome function, promotes viability and has been implicated in carcinogenesis. Inhibition of the apoptosome in vitro impairs mitochondrial function and promotes mitophagy. To examine whether inhibition of the apoptosome would enhance mitophagy and promote oncogenesis in vivo, transgenic mice were generated that express Casp9DN in the T cell lineage. The effects of Casp9DN on thymocyte viability, mitophagy and thymic tumor formation were examined. In primary thymocytes, Casp9DN delayed dexamethasone (Dex)-induced cell death, altered mitochondrial structure, and decreased oxidant production. Transmission electron microscopy (TEM) revealed that inhibition of the apoptosome resulted in structurally abnormal mitochondria that in some cases were engulfed by double-membrane structures resembling autophagosomes. Consistent with mitochondria being engulfed by autophagosomes (mitophagy), confocal microscopy showed colocalization of LC3-GFP and mitochondria. However, Casp9DN did not significantly accelerate T-cell lymphoma alone, or in combination with Lck-Bax38/1, or with Beclin 1+/− mice, two tumor-prone strains in which altered mitochondrial function has been implicated in promoting tumor development. In addition, heterozygous disruption of Beclin 1 had no effect on T-cell lymphoma formation in Lck-Bax38/1 mice. Further studies showed that Beclin 1 levels had no effect on Casp9DN-induced loss of mitochondrial function. These results demonstrate that neither inhibition of apoptosome function nor Beclin 1 haploinsufficiency accelerate T-cell lymphoma development in mice

    A methoxy derivative of resveratrol analogue selectively induced activation of the mitochondrial apoptotic pathway in transformed fibroblasts

    Get PDF
    Resveratrol (R-3), a trihydroxy trans-stilbene from grape, inhibits multistage carcinogenesis in animal models. A resveratrol derivative 3,4,5,4′-tetrahydroxystilbene (R-4) exhibits potent growth inhibitory effect against transformed human cells. Here we report that 3,4,5,4′-tetramethoxystilbene (MR-4), converted from R-4, was more potent against cancer cell lines (WI38VA, IMR-90SV, HeLa, LNCaP, HT-29, and HepG2), but had almost no inhibitory effect on the growth of normal cells (WI38, IMR-90, BJ-T) at the concentrations tested. The IC50 value of MR-4 on the growth inhibition of transformed WI38VA human cells was 0.5 μM, as compared to the value of greater than 50 μM for the normal WI38 cells. Resveratrol, however, did not exhibit such clear differential effect and the IC50 value of R-3 for WI38VA cells was about 50 μM. The growth inhibitory effect of MR-4 correlated with the induction of apoptosis in the transformed cells. When normal WI38 cells and transformed WI38VA cells were compared, MR-4 induced increases of the Bax/Bcl-2 mRNA ratio, p53 and Bax protein level, activation of caspases, and DNA fragmentation in transformed, but not in normal cells. Further analysis revealed that MR-4 caused a rapid appearance of perinuclear aggregation of mitochondria in WI38VA but not in WI38 cells, suggesting that the mitochondria could serve as an early target of MR-4. R-3 also induced apoptosis and mitochondrial clustering but only at a much higher concentration, close to 500 μM. Taken together, the specific activation of the mitochondria-mediated apoptotic pathway could be a major reason for the striking differential growth inhibitory effect of MR-4

    Sub-Lethal Irradiation of Human Colorectal Tumor Cells Imparts Enhanced and Sustained Susceptibility to Multiple Death Receptor Signaling Pathways

    Get PDF
    Background: Death receptors (DR) of the TNF family function as anti-tumor immune effector molecules. Tumor cells, however, often exhibit DR-signaling resistance. Previous studies indicate that radiation can modify gene expression within tumor cells and increase tumor cell sensitivity to immune attack. The aim of this study is to investigate the synergistic effect of sub-lethal doses of ionizing radiation in sensitizing colorectal carcinoma cells to death receptor-mediated apoptosis. Methodology/Principal Findings: The ability of radiation to modulate the expression of multiple death receptors (Fas/ CD95, TRAILR1/DR4, TRAILR2/DR5, TNF-R1 and LTbR) was examined in colorectal tumor cells. The functional significance of sub-lethal doses of radiation in enhancing tumor cell susceptibility to DR-induced apoptosis was determined by in vitro functional sensitivity assays. The longevity of these changes and the underlying molecular mechanism of irradiation in sensitizing diverse colorectal carcinoma cells to death receptor-mediated apoptosis were also examined. We found that radiation increased surface expression of Fas, DR4 and DR5 but not LTbR or TNF-R1 in these cells. Increased expression of DRs was observed 2 days post-irradiation and remained elevated 7-days post irradiation. Sub-lethal tumor cell irradiation alone exhibited minimal cell death, but effectively sensitized three of three colorectal carcinoma cells to both TRAIL and Fasinduced apoptosis, but not LTbR-induced death. Furthermore, radiation-enhanced Fas and TRAIL-induced cell death lasted as long as 5-days post-irradiation. Specific analysis of intracellular sensitizers to apoptosis indicated that while radiation di

    Repression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but not its receptors during oral cancer progression

    Get PDF
    BACKGROUND: TRAIL plays an important role in host immunosurveillance against tumor progression, as it induces apoptosis of tumor cells but not normal cells, and thus has great therapeutic potential for cancer treatment. TRAIL binds to two cell-death-inducing (DR4 and DR5) and two decoy (DcR1, and DcR2) receptors. Here, we compare the expression levels of TRAIL and its receptors in normal oral mucosa (NOM), oral premalignancies (OPM), and primary and metastatic oral squamous cell carcinomas (OSCC) in order to characterize the changes in their expression patterns during OSCC initiation and progression. METHODS: DNA microarray, immunoblotting and immunohistochemical analyses were used to examine the expression levels of TRAIL and its receptors in oral epithelial cell lines and in archival tissues of NOM, OPM, primary and metastatic OSCC. Apoptotic rates of tumor cells and tumor-infiltrating lymphocytes (TIL) in OSCC specimens were determined by cleaved caspase 3 immunohistochemistry. RESULTS: Normal oral epithelia constitutively expressed TRAIL, but expression was progressively lost in OPM and OSCC. Reduction in DcR2 expression levels was noted frequently in OPM and OSCC compared to respective patient-matched uninvolved oral mucosa. OSCC frequently expressed DR4, DR5 and DcR1 but less frequently DcR2. Expression levels of DR4, DR5 and DcR1 receptors were not significantly altered in OPM, primary OSCC and metastatic OSCC compared to patient-matched normal oral mucosa. Expression of proapoptotic TRAIL-receptors DR4 and DR5 in OSCC seemed to depend, at least in part, on whether or not these receptors were expressed in their parental oral epithelia. High DR5 expression in primary OSCC correlated significantly with larger tumor size. There was no significant association between TRAIL-R expression and OSSC histology grade, nodal status or apoptosis rates of tumor cells and TIL. CONCLUSION: Loss of TRAIL expression is an early event during oral carcinogenesis and may be involved in dysregulation of apoptosis and contribute to the molecular carcinogenesis of OSCC. Differential expressions of TRAIL receptors in OSCC do not appear to play a crucial role in their apoptotic rate or metastatic progression

    TNFα Cooperates with IFN-γ to Repress Bcl-xL Expression to Sensitize Metastatic Colon Carcinoma Cells to TRAIL-mediated Apoptosis

    Get PDF
    BACKGROUND: TNF-related apoptosis-inducing ligand (TRAIL) is an immune effector molecule that functions as a selective anti-tumor agent. However, tumor cells, especially metastatic tumor cells often exhibit a TRAIL-resistant phenotype, which is currently a major impediment in TRAIL therapy. The aim of this study is to investigate the synergistic effect of TNFα and IFN-γ in sensitizing metastatic colon carcinoma cells to TRAIL-mediated apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: The efficacy and underlying molecular mechanism of cooperation between TNFα and IFN-γ in sensitizing metastatic colon carcinoma cells to TRAIL-mediated apoptosis were examined. The functional significance of TNFα- and IFN-γ-producing T lymphocyte immunotherapy in combination with TRAIL therapy in suppression of colon carcinoma metastasis was determined in an experimental metastasis mouse model. We observed that TNFα or IFN-γ alone exhibits minimal sensitization effects, but effectively sensitized metastatic colon carcinoma cells to TRAIL-induced apoptosis when used in combination. TNFα and IFN-γ cooperate to repress Bcl-xL expression, whereas TNFα represses Survivin expression in the metastatic colon carcinoma cells. Silencing Bcl-xL expression significantly increased the metastatic colon carcinoma cell sensitivity to TRAIL-induced apoptosis. Conversely, overexpression of Bcl-xL significantly decreased the tumor cell sensitivity to TRAIL-induced apoptosis. Furthermore, TNFα and IFN-γ also synergistically enhanced TRAIL-induced caspase-8 activation. TNFα and IFN-γ was up-regulated in activated primary and tumor-specific T cells. TRAIL was expressed in tumor-infiltrating immune cells in vivo, and in tumor-specific cytotoxic T lymphocytes (CTL) ex vivo. Consequently, TRAIL therapy in combination with TNFα/IFN-γ-producing CTL adoptive transfer immunotherapy effectively suppressed colon carcinoma metastasis in vivo. CONCLUSIONS/SIGNIFICANCE: TNFα and IFN-γ cooperate to overcome TRAIL resistance at least partially through enhancing caspase 8 activation and repressing Bcl-xL expression. Combined CTL immunotherapy and TRAIL therapy hold great promise for further development for the treatment of metastatic colorectal cancer

    Design, Synthesis, and Biological Evaluation of Trisubstituted Piperazine Derivatives as Noncovalent Severe Acute Respiratory Syndrome Coronavirus 2 Main Protease Inhibitors with Improved Antiviral Activity and Favorable Druggability

    No full text
    : The ongoing transmission of SARS-CoV-2 necessitates the development of additional potent antiviral agents capable of combating the current highly infectious variants and future coronaviruses. Here, we present the discovery of potent nonpeptide main protease (Mpro) inhibitors with prominent antiviral activity and improved pharmacokinetic properties. Three series of 1,2,4-trisubstituted piperazine derivatives were designed and synthesized, and the optimal GC-78-HCl demonstrated high enzyme-inhibitory potency (IC50 = 0.19 μM) and exhibited excellent antiviral activity (EC50 = 0.40 μM), reaching the same level as Nirmatrelvir (EC50 = 0.38 μM). Additionally, GC-78-HCl displayed potent antiviral activities against various SARS-CoV-2 variants as well as HCoV-OC43 and HCoV-229E, indicating its potential broad-spectrum anticoronaviral activity. Notably, the pharmacokinetic properties of GC-78-HCl were somewhat enhanced compared to those of the lead compound. Furthermore, the cocrystal and molecular docking elucidated the mechanism of action. In conclusion, we discovered a novel nonpeptidic Mpro inhibitor with promising antiviral activity and a favorable pharmacokinetic profile
    • …
    corecore