300 research outputs found

    Coherent optical transfer of Feshbach molecules to a lower vibrational state

    Full text link
    Using the technique of stimulated Raman adiabatic passage (STIRAP) we have coherently transferred ultracold 87Rb2 Feshbach molecules into a more deeply bound vibrational quantum level. Our measurements indicate a high transfer efficiency of up to 87%. As the molecules are held in an optical lattice with not more than a single molecule per lattice site, inelastic collisions between the molecules are suppressed and we observe long molecular lifetimes of about 1 s. Using STIRAP we have created quantum superpositions of the two molecular states and tested their coherence interferometrically. These results represent an important step towards Bose-Einstein condensation (BEC) of molecules in the vibrational ground state.Comment: 4 pages, 5 figure

    Cruising through molecular bound state manifolds with radio frequency

    Full text link
    The emerging field of ultracold molecules with their rich internal structure is currently attracting a lot of interest. Various methods have been developed to produce ultracold molecules in pre-set quantum states. For future experiments it will be important to efficiently transfer these molecules from their initial quantum state to other quantum states of interest. Optical Raman schemes are excellent tools for transfer, but can be involved in terms of equipment, laser stabilization and finding the right transitions. Here we demonstrate a very general and simple way for transfer of molecules from one quantum state to a neighboring quantum state with better than 99% efficiency. The scheme is based on Zeeman tuning the molecular state to avoided level crossings where radio-frequency transitions can then be carried out. By repeating this process at different crossings, molecules can be successively transported through a large manifold of quantum states. As an important spin-off of our experiments, we demonstrate a high-precision spectroscopy method for investigating level crossings.Comment: 5 pages, 5 figures, submitted for publicatio

    Status Update of the Parkes Pulsar Timing Array

    Full text link
    The Parkes Pulsar Timing Array project aims to make a direct detection of a gravitational-wave background through timing of millisecond pulsars. In this article, the main requirements for that endeavour are described and recent and ongoing progress is outlined. We demonstrate that the timing properties of millisecond pulsars are adequate and that technological progress is timely to expect a successful detection of gravitational waves within a decade, or alternatively to rule out all current predictions for gravitational wave backgrounds formed by supermassive black-hole mergers.Comment: 10 pages, 3 figures, Amaldi 8 conference proceedings, accepted by Classical & Quantum Gravit

    Polarization studies of Rotating Radio Transients

    Get PDF
    We study the polarization properties of 22 known rotating radio transients (RRATs) with the 64-m Parkes radio telescope and present the Faraday rotation measures (RMs) for the 17 with linearly polarized flux exceeding the off-pulse noise by 3σ\sigma. Each RM was estimated using a brute-force search over trial RMs that spanned the maximum measurable range ±1.18×105radm2\pm1.18 \times 10^5 \, \mathrm{rad \, m^2} (in steps of 1 radm2\mathrm{rad \, m^2}), followed by an iterative refinement algorithm. The measured RRAT RMs are in the range |RM| 1\sim 1 to 950\sim 950 rad m2^{-2} with an average linear polarization fraction of 40\sim 40 per cent. Individual single pulses are observed to be up to 100 per cent linearly polarized. The RMs of the RRATs and the corresponding inferred average magnetic fields (parallel to the line-of-sight and weighted by the free electron density) are observed to be consistent with the Galactic plane pulsar population. Faraday rotation analyses are typically performed on accumulated pulsar data, for which hundreds to thousands of pulses have been integrated, rather than on individual pulses. Therefore, we verified the iterative refinement algorithm by performing Monte Carlo simulations of artificial single pulses over a wide range of S/N and RM. At and above a S/N of 17 in linearly polarized flux, the iterative refinement recovers the simulated RM value 100 per cent of the time with a typical mean uncertainty of 5\sim5 rad m2^{-2}. The method described and validated here has also been successfully used to determine reliable RMs of several fast radio bursts (FRBs) discovered at Parkes.Comment: Submitted to MNRAS, 10 pages, 6 figure

    The first interferometric detections of Fast Radio Bursts

    Get PDF
    We present the first interferometric detections of Fast Radio Bursts (FRBs), an enigmatic new class of astrophysical transient. In a 180-day survey of the Southern sky we discovered 3 FRBs at 843 MHz with the UTMOST array, as part of commissioning science during a major ongoing upgrade. The wide field of view of UTMOST (9\approx 9 deg2^{2}) is well suited to FRB searches. The primary beam is covered by 352 partially overlapping fan-beams, each of which is searched for FRBs in real time with pulse widths in the range 0.655 to 42 ms, and dispersion measures \leq2000 pc cm3^{-3}. Detections of FRBs with the UTMOST array places a lower limit on their distances of 104\approx 10^4 km (limit of the telescope near-field) supporting the case for an astronomical origin. Repeating FRBs at UTMOST or an FRB detected simultaneously with the Parkes radio telescope and UTMOST, would allow a few arcsec localisation, thereby providing an excellent means of identifying FRB host galaxies, if present. Up to 100 hours of follow-up for each FRB has been carried out with the UTMOST, with no repeating bursts seen. From the detected position, we present 3σ\sigma error ellipses of 15 arcsec x 8.4 deg on the sky for the point of origin for the FRBs. We estimate an all-sky FRB rate at 843 MHz above a fluence Flim\cal F_\mathrm{lim} of 11 Jy ms of 78\sim 78 events sky1^{-1} d1^{-1} at the 95 percent confidence level. The measured rate of FRBs at 843 MHz is of order two times higher than we had expected, scaling from the FRB rate at the Parkes radio telescope, assuming that FRBs have a flat spectral index and a uniform distribution in Euclidean space. We examine how this can be explained by FRBs having a steeper spectral index and/or a flatter logNN-logF\mathcal{F} distribution than expected for a Euclidean Universe.Comment: 13 pages, 8 figures, 2 table

    Development of a pulsar-based timescale

    Get PDF
    Using observations of pulsars from the Parkes Pulsar Timing Array (PPTA) project we develop the first pulsar-based timescale that has a precision comparable to the uncertainties in international atomic timescales. Our ensemble of pulsars provides an Ensemble Pulsar Scale (EPS) analogous to the free atomic timescale Echelle Atomique Libre (EAL). The EPS can be used to detect fluctuations in atomic timescales and therefore can lead to a new realisation of Terrestrial Time, TT(PPTA11). We successfully follow features known to affect the frequency of the International Atomic Timescale (TAI) and we find marginally significant differences between TT(PPTA11) and TT(BIPM11). We discuss the various phenomena that lead to a correlated signal in the pulsar timing residuals and therefore limit the stability of the pulsar timescale.Comment: Accepted for publication in MNRA

    Timing analysis for 20 millisecond pulsars in the Parkes Pulsar Timing Array

    Get PDF
    We present timing models for 20 millisecond pulsars in the Parkes Pulsar Timing Array. The precision of the parameter measurements in these models has been improved over earlier results by using longer data sets and modelling the non-stationary noise. We describe a new noise modelling procedure and demonstrate its effectiveness using simulated data. Our methodology includes the addition of annual dispersion measure (DM) variations to the timing models of some pulsars. We present the first significant parallax measurements for PSRs J1024-0719, J1045-4509, J1600-3053, J1603-7202, and J1730-2304, as well as the first significant measurements of some post-Keplerian orbital parameters in six binary pulsars, caused by kinematic effects. Improved Shapiro delay measurements have resulted in much improved pulsar mass measurements, particularly for PSRs J0437-4715 and J1909-3744 with Mp=1.44±0.07M_p=1.44\pm0.07 MM_\odot and Mp=1.47±0.03M_p=1.47\pm0.03 MM_\odot respectively. The improved orbital period-derivative measurement for PSR J0437-4715 results in a derived distance measurement at the 0.16% level of precision, D=156.79±0.25D=156.79\pm0.25 pc, one of the most fractionally precise distance measurements of any star to date.Comment: 21 pages, 5 figures, 7 tables. Accepted for publication in MNRA

    The UTMOST pulsar timing programme I: overview and first results

    Full text link
    We present an overview and the first results from a large-scale pulsar timing programme that is part of the UTMOST project at the refurbished Molonglo Observatory Synthesis Radio Telescope (MOST) near Canberra, Australia. We currently observe more than 400 mainly bright southern radio pulsars with up to daily cadences. For 205 (8 in binaries, 4 millisecond pulsars) we publish updated timing models, together with their flux densities, flux density variability, and pulse widths at 843 MHz, derived from observations spanning between 1.4 and 3 yr. In comparison with the ATNF pulsar catalogue, we improve the precision of the rotational and astrometric parameters for 123 pulsars, for 47 by at least an order of magnitude. The time spans between our measurements and those in the literature are up to 48 yr, which allows us to investigate their long-term spin-down history and to estimate proper motions for 60 pulsars, of which 24 are newly determined and most are major improvements. The results are consistent with interferometric measurements from the literature. A model with two Gaussian components centred at 139 and 463 kms1463~\text{km} \: \text{s}^{-1} fits the transverse velocity distribution best. The pulse duty cycle distributions at 50 and 10 per cent maximum are best described by log-normal distributions with medians of 2.3 and 4.4 per cent, respectively. We discuss two pulsars that exhibit spin-down rate changes and drifting subpulses. Finally, we describe the autonomous observing system and the dynamic scheduler that has increased the observing efficiency by a factor of 2-3 in comparison with static scheduling.Comment: 31 pages, 14 figures, 6 tables, accepted for publication in MNRA

    The UTMOST Survey for Magnetars, Intermittent pulsars, RRATs and FRBs I: System description and overview

    Get PDF
    We describe the ongoing `Survey for Magnetars, Intermittent pulsars, Rotating radio transients and Fast radio bursts' (SMIRF), performed using the newly refurbished UTMOST telescope. SMIRF repeatedly sweeps the southern Galactic plane performing real-time periodicity and single-pulse searches, and is the first survey of its kind carried out with an interferometer. SMIRF is facilitated by a robotic scheduler which is capable of fully autonomous commensal operations. We report on the SMIRF observational parameters, the data analysis methods, the survey's sensitivities to pulsars, techniques to mitigate radio frequency interference and present some early survey results. UTMOST's wide field of view permits a full sweep of the Galactic plane to be performed every fortnight, two orders of magnitude faster than previous surveys. In the six months of operations from January to June 2018, we have performed 10\sim 10 sweeps of the Galactic plane with SMIRF. Notable blind re-detections include the magnetar PSR J1622-4950, the RRAT PSR J0941-3942 and the eclipsing pulsar PSR J1748-2446A. We also report the discovery of a new pulsar, PSR J1705-54. Our follow-up of this pulsar with the UTMOST and Parkes telescopes at an average flux limit of 20\leq 20 mJy and 0.16\leq 0.16 mJy respectively, categorizes this as an intermittent pulsar with a high nulling fraction of <0.002< 0.002Comment: Submitted to MNRAS, comments welcom
    corecore